2D NMR part III

Chris Waudby

c.waudby@ucl.ac.uk

Recap: vector model description of J-coupling

Some common elements of pulse sequences...

- Decoupling
- · Constant time evolution
- · Selective pulses & Bloch-Siegert shifts
- · Adiabatic pulses
- Simple applications of gradient pulses
- · Water suppression

Decoupling (on-resonance)

- Coupling = splitting of resonances by frequency J
- Therefore, to observe (resolve) coupling, need to observe for time $\tau \approx 1 \, / \, J$
 - i.e. lifetime of coupled state must be $\geq 1 / J$
- · Converse: reduce the lifetime, and coupling won't be observed
- Basic idea: exchange $S_{\alpha} < --> S_{\beta}$ with π pulse to refocus coupling evolution

HSQC with ¹³C decoupling

Weak coupling ($^1J_{NC'}$ ~ 15 Hz) Invert ^{13}C spin-state half-way through ^{15}N evolution

Decoupling during acquisition

- Unlike decoupling of indirect dimension, magnetisation is observed continuously
 - No longer sufficient to refocus coupling over entire evolution time
 - For effective decoupling, coupling must be continuously refocused on timescale << 1 / J
- J couplings are proportional to the gyromagnetic ratios of the two nuclei – so ¹H couplings are much stronger
 - e.g. ${}^{1}J_{NH} \approx 90 \text{ Hz}, \tau << 11 \text{ ms}$
 - e.g. ${}^{1}J_{CH} \approx 140 \; Hz, \; \tau << 7 \; ms$
- Heavy rf loads power limits...
- Quality of inversion? Off-resonance effects...

Off-resonance effects / selective decoupling

Vector model description of J coupling scaling

Off-resonance effects of hard pulses

Off-resonance effects of hard π pulse

Solution 1 – more power?

- hardware limits
- sample heating

Composite pulse performance

Composite pulses

- · Correction of:
 - off-resonance effects
 - mis-calibration / B₁ inhomogeneity

 π_{X}

Cycles and supercycles

$$R = (\pi/2)_{x} - \pi_{y} - (\pi/2)_{x}$$

RRRR

RRRR

WALTZ-16

 $\Xi = \frac{2\pi\Delta F}{\gamma B_1} = 1.8$ frequency range with at least 80% intensity

'Figure of merit'

Fundamentals of Protein NMR Spectroscopy By Gordon S. Rule, T. Kevin Hitchens

Constant time acquisition

What do you do when there are large homonuclear couplings in the S spins (e.g. ¹Jcc)?

eg. fully labelled 13C Sample

GARP

$$\Xi = \frac{2\pi\Delta F}{\gamma B_1} = 4.8$$
 Much bigger bandwidth Less uniform intensities

Fundamentals of Protein NMR Spectroscopy By Gordon S. Rule, T. Kevin Hitchens

Constant time acquisition

$$2T = n^{1}J_{CC}$$

Constant time acquisition

t₁ small: just a spin-echo on ¹⁵N chemical shift refocussed coupling refocussed (by ¹⁵N 180° pulse)

Constant time acquisition t_2 $t_1/2$ t_1

Constant time acquisition

 $t_1 = 2T$: maximum possible value of t_1 chemical shift evolves coupling refocussed (by ¹H 180°)

Constant time acquisition

Observed magnetisation proportional to: $\cos (\omega_{M}t_{1})\cos (2\pi J_{CC}T)$

Choose: $2T = n / {}^{1}J_{CC}$

 $^{1}J_{CC} \sim 35 \text{ Hz}$, so 2T = 27 or 54 ms

Constant time acquisition

Ha/Ca region of ¹H, ¹³C-HSQC of ubiquitin

Linear prediction

Extend FID by fitting autoregression model to predict future points – can reduce truncation artifacts

Constant time acquisition

- Almost no decay in FID of CT-HSQC
 Linear prediction particularly effective
- Mirror image LP can be used to double size of input data

Constant time acquisition

$$2T = n / ^{1}J_{CC}$$

With *n*=1, sign of peak depends on number of directly bonded ¹³C atoms

Useful for identification of e.g. Met Cε

$$cox(2\pi JT) \rightarrow -1$$

except Met(5=0) $\rightarrow +1$

A complete CT-HSQC pulse sequence

Selective pulses (for ¹³C)

- How to achieve selective excitation/inversion of aliphatics (40 ppm) leaving carbonyls (170 ppm) untouched?
- Pulsing with field strength ω_1 on C_{aliph} will create an effective field ω_{eff} on C' (at offset $\Delta\Omega$ from C_{aliph})
- Trick: choose ω_{eff} such that 90° or 180° rotation of C_{aliph} causes 360° rotation of C'

Selective pulses (for ¹³C)

Selective pulses

Ses $\omega_{eff} = \omega_1 + \Delta \Omega = (2\omega)$ $\Rightarrow \omega_1 = \Delta \Omega / \sqrt{3}$ $\Delta \Omega = 0$ $\omega_1^{eff} = 2\omega_1$

- For 90° pulse: $\omega_1 = \Delta\Omega / \sqrt{15}$
- For 180° pulse: $\omega_1 = \Delta\Omega / \sqrt{3}$
- Remember: $\omega_1 = 1 / (2\pi t_{360^\circ})$
- So choose pulse lengths: $t_{90^{\circ}} = \sqrt{15} / (4 \Delta v)$ $t_{180^{\circ}} = \sqrt{3} / (2 \Delta v)$

and calibrate power accordingly

For 360° rotation off-resonance with 180° rotation on-resonance

Selective ¹³C excitation – example

- 700 MHz ¹H
 176 MHz ¹³C
- C_{aliph} ~ 50 ppm
 C' ~ 175 ppm
- $\Delta V = (175 50) \times 176$ = 22 kHz
- $t_{90^{\circ}} = \sqrt{15} / (4 \Delta v)$ = 44.0 µs

Compare excitation profile with 400 µs selective pulse

Trade off quality of frequency selection for pulse length

Bloch-Siegert shifts

- During a selective pulse (of length t_p)
 off-resonance spins undergo a 2π rotation and
 therefore experience no phase change
 (in the on-resonance rotating frame)
- However, in the absence of the pulse the same spins would experience a phase change:

$$\Delta \Phi = t_{\rm p} \Delta \Omega$$

• Therefore, from the perspective of the off-resonance spins the selective pulse causes a phase shift:

$$\Delta \Phi = -t_{\rm p} \Delta \Omega$$

- This is the 'Bloch-Siegert phase shift'
- Also relevant for shaped pulses

Selective ¹³C inversion – example

- 700 MHz ¹H 176 MHz ¹³C
- C_{aliph} ~ 50 ppm
 C' ~ 175 ppm
- $\Delta v = (175 50) \times 17$ = 22 kHz
- $t_{90^{\circ}} = \sqrt{3} / (2 \Delta v)$ = 39.4 µs

Compare inversion profile with 250 µs selective pulse

Notice that the 180° pulse is shorter and therefore needs higher power than 90° pulse!

Bloch-Siegert shifts

Compensating for Bloch-Siegert phase shifts

Adiabatic pulses

Adiabatic pulses

- Low-power pulses for [selective] excitation or inversion
- Insensitive to miscalibration
- Very wide bandwidth
- Operate on different principle to hard pulses or shaped pulses: slowly sweep field so that magnetisation vectors stay locked to B_{eff}
- Must satisfy adiabatic condition (slowly changing Hamiltonian): $\left| \frac{d\theta}{dt} \right| \ll \omega_{\rm eff}$
- Disadvantage long pulses, relaxation losses

Adiabatic pulses

tan/tanh pulse

NMR: pulsed-field gradients

Disruption of field homogeneity

Magnetic field strength linearly proportional to position along z-axis:

$$B = B_0 + G \cdot z$$

Uses of gradient pulses: purge pulses

Uses of gradient pulses: purge pulses

Uses of gradient pulses: refocussing pulses

Placement of refocussing gradients

Long delays between gradient pairs will result in lower signal intensity due to diffusion

$$\frac{I}{I_0} = \exp\left[-(G\gamma\delta)^2(\Delta - \delta/3)D\right]$$

Uses of gradient pulses: zz filter

Uses of gradient pulses: inversion pulses

- Only longitudinal magnetisation survives pair of purge gradients
- Sign change of second gradient gives opposite effect to refocussing element – maximum suppression of transverse magnetisation

Uses of gradient pulses: zz filter

Solvent suppression

- Pre-saturation (zgpr)
 - selective saturation of H₂O
 resonance
 - saturation can transfer to exchangable protons

Water suppression – excitation sculpting

Like indicate gradient encoded magnetisation
$$I_z \xrightarrow{(\pi/2) \, I_x} -I_y \xrightarrow{G_1} -I_y \xrightarrow{I_y} -I_y \xrightarrow{\Pi_x} I_y \xrightarrow{G_1} -I_y \xrightarrow{repeat (G_2)} I_y$$

$$l_z \xrightarrow{(\pi/2) \ l_x} -l_y \xrightarrow{G_1} -l_y \xrightarrow{(\pi/2) \ water_x} \underset{l_z}{\sim} \frac{\pi \ l_{-x}}{\longrightarrow} -l_z \xrightarrow{repeat (G_2)} \underset{l_z}{\sim}$$

Water suppression – excitation sculpting

- Selective excitation of H₂O during spin-echo ensures H₂O is not rephased by gradient pair
- Selective excitation has better frequency selectivity than selective inversion
- Use of two gradient pairs ensures excellent water suppression
- Water returned to +z
- Water is dephased but not saturated
- No saturation of exchangable protons or saturation transfer – better sensitivity

Solvent suppression

Radiation damping

- 700 MHz (on resonance) rf pulse in probe induces 90° rotation of spins
- Spins precess at Larmor frequency (700 MHz)
- Changing magnetic field of spins induces 700 MHz rf signal in probe ('the signal')
- BUT! 700 MHz rf signal in probe induces rotation of spins...
- Result: rapid rotation of H₂O back to equilibrium (taking other spins along for the journey)
- Practical significance: must take precautions in pulse sequence if placing H₂O in xy plane or on -z

Water suppression: HSQC example

Placement of refocussing gradients

Immediate dephasing of H₂O placed in *xy* plane prevents radiation damping – keep gradients close to 90° pulses!

Long delays between gradient pairs will result in lower signal intensity due to diffusion