3D NMR

чн

www.protein-nmr.org.uk

3D NMR

3D NMR

Chris Waudby

- 2 indirect dimensions, independently incremented evolution times
- Much longer acquisition than 2Ds (hours-days)
- SNR decreases by $\sqrt{2}$ for each extra dimension (quadrature detection, need to record separate sin and cos components)
- Longer sequences lower sensitivity

Visualising 3D NMR spectra

Effective long-range magnetisation transfer

SNR ~
$$ns^{1/2} \cdot conc \cdot B_0^{3/2} \cdot \gamma_{ex} \cdot \gamma_{obs}^{3/2}$$

Michael Sattler

Optimisation of transfer efficiencies

INEPT transfer vs relaxation

Backbone ${}^{1}J$ and ${}^{2}J$ couplings

- | couplings proportional to gyromagnetic ratio (N.B. negative couplings involving ^{15}N)
- ² | couplings very small!

The HNCO experiment

CO chemical shifts very sequence dependent

HN(CA)CO

²J_{NC'} < 1 Hz, so transfer via CA is required

www.protein-nmr.org.uk

HNCO / HN(CA)CO

HNCO links HN_i with C'_{i-1}

HN(CA)CO links HN_i with C'_{i-1} and C'_i

www.protein-nmr.org.uk

HNCA

HNCO / HN(CA)CO

www.protein-nmr.org.uk

HNCA links HN_i with CA_{i-1} (weak) and CA_i (strong)

HN(CO)CA links HN_i with CA_{i-1}

www.protein-nmr.org.uk

www.protein-nmr.org.uk

CBCA(CO)NH

HA/HB polarisation transferred to HN

With deuterated protein, 'out-and-back' HN(CO)CACB experiment must be used – longer, less sensitive

www.protein-nmr.org.uk

CBCANH

experiment must be used – longer, less sensitive

www.protein-nmr.org.uk

CBCANH

www.protein-nmr.org.uk

The assignment process

www.protein-nmr.org.uk

Relative sensitivity of 3D experiments

Spin system typing

- CA and CB shifts are extremely useful for determining residue type
- Extent of CA and CB chemical shift dispersion is dependent on secondary structure formation – bad for IDPs!
- Ser/Thr very easy to identify characteristic CB shifts (bonded to electronegative oxygen)
- Ala unique CB shift around 17 ppm
- Gly unique CA shift around 45 ppm and no CB resonances!
- Others are less clear, but usually can restrict to a few possibilities
- Prolines are only observed in *i*-1 experiments – e.g. CBCA(CO)NH

Sequence analysis – identifying assignment checkpoints

alpha-synucein

1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>
MDVFMKGLSK	akegvv aaa e	KTKQGVAE <mark>AA</mark>	GKTKEGVLYV	GSKTKEGVVH	gv at vaektk
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
EQVTNV <mark>GG</mark> AV	V TG V TA VAQK	TVE <mark>GA</mark> GSIAA	ATGFVKKDQL	GKNEE <mark>GAP</mark> QE	GILEDMPVDP
13 <u>0</u> DNEAYEM <mark>PS</mark> E	14 <u>0</u> Egyqdye <mark>p</mark> ea				

Sequence analysis – identifying assignment checkpoints

ddFln5				65 <u>0</u> K PAPS	66 <u>0</u> Aehsyaegeg
67 <u>0</u> lvkvfdna <mark>p</mark> a	68 <u>0</u> EFTIFAVDTK	69 <u>0</u> GVARTD <mark>GG</mark> DP	70 <u>0</u> FEVAING <mark>P</mark> DG	71 <u>0</u> lvvdakvtdn	72 <u>0</u> ND <mark>GT</mark> YGVVYD
73 <u>0</u> A P VEGNYNVN	74 <u>0</u> VTLRGN P IKN	75 <u>0</u> M P IDVKCIEG			

Sidechain assignment: HBHA(CO)NH

Sidechain protons and magnetic equivalence

Sidechain assignment: TOCSY

<u>TOtal</u> <u>Correlation</u> <u>Spectroscop</u><u>Y</u>

Extension of HBHA(CO)NH – wouldn't it be nice to get cross-peaks from ALL the spins in a sidechain?

2D TOCSY experiment

$$\begin{split} I_{1,z} \to -I_{1,y} \to -I_{1,y} \cos(\omega_1 t_1) + \text{other terms} \to I_{1,z} \cos(\omega_1 t_1) \\ & \text{eliminated by} \\ & \text{phase cycling} \\ & \text{mixing period} \end{split}$$

Isotropic mixing

$$\begin{split} \mathcal{H} &= -\sum_{i} \omega_{i} I_{iz} + \sum_{i,j} 2\pi J_{ij} \mathbf{I}_{i} \cdot \mathbf{I}_{j} \\ &= -\sum_{i} \omega_{i} I_{iz} + \sum_{i,j} 2\pi J_{ij} I_{iz} I_{jz} \quad \text{when } \Delta \omega >> J \\ \text{(weak coupling)} \end{split}$$

DISPI spin-lock manipulates the effective Hamiltonian to remove chemical shift differences ('isotropic mixing') so:

$$\mathcal{H}_{\text{isotropic mixing}} = \sum_{i,j} 2\pi J_{ij} \mathbf{I}_i \cdot \mathbf{I}_j$$

All spins are strongly coupled! Magnetisation will transfer between all spins in the spin system.

Isotropic mixing

The spin-lock reduces the effective chemical shift difference between spins, increasing the efficiency of TOCSY transfer.

The magnitude of this effect depends on the strength of the spin-lock relative to the frequency difference:

Fundamentals of Protein NMR Spectroscopy, Rule & Hitchens

TOCSY transfer coefficient

Optimising TOCSY mixing time

CC(CO)NH

250

Cavanagh

H(CCO)NH

15N TOCSY-HSQC

www.protein-nmr.org.uk

www.protein-nmr.org.uk

HCCH TOCSY

Which chemical shifts to encode for 3D experiment?

HCCH TOCSY

TOCSY transfer between carbons

www.protein-nmr.org.uk

4D HCCH TOCSY

 $40 \times 9 \times 10 \times 1024$ points – 6.4 days acquisition

Olejniczak et al (1992) J Biomol NMR