Introduction to biomolecular NMR spectroscopy

Chris Waudby

c.waudby@ucl.ac.uk

Course outline

- Approx. 50:50 split:
 1 hr lectures,
 1 hr examples class
- Exercises from Keeler, Understanding NMR Spectroscopy, 2nd ed
- I will NOT be lecturing NMR theory directly – expect selfstudy during the week
- Excellent lectures from James Keeler are already available on YouTube: <u>http://goo.gl/PdbkUQ</u>

Further reading

• Online lectures for those who want a deeper understanding of quantum mechanics:

http://theoreticalminimum.com

Nuclear spin and the Zeeman effect

- Nuclear spin S = 0, 1/2, 1, 3/2, ... is a fundamental quantum mechanical property of a nucleus
- Zeeman effect: In the presence of a magnetic field, *B*, the system splits into (2S 1) energy levels

Magnetically-active nuclei

NMR 'friendly'

quadrupolar moment => broad lines

Common nuclei for biomolecular NMR

	Spin	Natural abundance	γ / 10 ⁷ s ⁻¹ T ⁻¹	Frequency / MHz
1H	1/2	99.985%	26.7522	700
2H	1	0.015%	4.1066	107.5
13C	1/2	1.108%	6.7283	176
15N	1/2	0.37%	-2.7126	71
19F	1/2	100%	25.18148	659
31P	1/2	100%	10.8394	283.6

frequencies calculated for $B_0 \approx 16.4 \text{ T}$

The chemical shift

• Exact resonance frequencies are dependent on shielding by electrons at the nucleus:

¹H chemical shifts

• NMR absorption frequencies are dependent on the field strength B₀. Normalise using frequency of a reference compound to define the 'chemical shift', comparable between different NMR spectrometers:

DSS

https://www.cpp.edu/~lsstarkey/courses/NMR/NMRshifts1H-general.pdf

¹³C chemical shifts

http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Magnetic_Resonance_Spectroscopies/ Nuclear_Magnetic_Resonance/NMR%3A_Experimental/NMR%3A_Interpretation

15N chemical shifts

http://chem.ch.huji.ac.il/nmr/techniques/1d/row2/n.html

Cutaway of an NMR spectrometer

Introduction to NMR spectrometers

http://u-of-o-nmr-facility.blogspot.co.uk

http://web.mit.edu/speclab/www/Facility/shim-probe-sample.html

Quenching

Sensitivity

- NMR is not a sensitive technique due mainly to the fact that the difference between energy levels is very small.
- The absolute sensitivity depends on many factors:

$$\mathrm{SNR} \propto rac{n \gamma_{\mathrm{e}} \sqrt{B_{\mathrm{0}}^{3} \gamma_{\mathrm{d}}^{3} t}}{\sqrt{R_{\mathrm{S}}(T_{\mathrm{S}}+T_{\mathrm{A}}) + R_{\mathrm{C}}(T_{\mathrm{C}}+T_{\mathrm{A}})}}$$

Cryoprobes

Cryoprobes

H. Kovacs et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 46 (2005) 131-155

NMR tubes and sample volume

- Regular NMR tube: 550 600 µL
- Shigemi tube: 250 300 μL

A

600 μL adjusted to maximum depth *Recommended*

 $\begin{array}{c} 300 \ \mu L \\ \text{positioned too low} \\ \text{sample not in detected region} \end{array}$

• Shigemi without plunger: 400 µL

• 3 mm tubes: 200 – 250 µL

400 μL centered in detected region acceptable but NOT recommended for normal applications; difficult to shim

Cryoprobes

H. Kovacs et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 46 (2005) 131-155

NMR tubes and sample volume

Tuning and matching

• Probe electronics act as a bandpass filter: for optimum sensitivity, must tune and match to let your signals through!

Well Tuned and Well Matched

Poorly Tuned but Well Matched

Locking

- Modern NMR demands highly homogeneous fields that do not vary over time
- · Lock system: 'spectrometer within a spectrometer'
- Constantly monitors ²H frequency in solvent (HDO resonance) and adjusts electromagnet to compensate for any drift

Shimming

- Process of optimising field homogeneity to ≤ 1 ppb (<1 Hz)
- But protein resonances are broad anyway why bother?

poorly shimmed magnet

magnetic field varies along nmr tube (z-axis)

Effect on lineshapes

Gradient shimming

- Magnetic resonance imaging (MRI) experiment to map the water chemical shift across sample
- Shim coils then adjusted using their known profiles to obtain a homogenous field

Sample preparation

• Solvent: H₂O / D₂O?

Autoshim

Sample preparation

- Solvent: H₂O / D₂O?
- Choice of buffer:
 - protonation / spectral overlap?
 - ionic strength

Figure 3. One-dimensional spectra of a 1 mM lysozyme sample measured in 50 mM sodium phosphate, 50 mM HEPES/NaOH, or 50 mM MOPS/BIS-TRIS propane buffer, all pH 7, and in 50 mM MES/BIS-TRIS, pH 6.0. Only the most high-field-shifted regions of the spectra are shown.

Effect of buffers on sensitivity

able in highly falled Expected Concentry Factor Li	and be contacting of co	fordi Billoroni Ganoj Fili al 20	o min oonoonaaaon
buffer	$R_{\rm e}/R_{\rm c}$	sensitivity factor L	conductivity (mS/cm)
pentasodium tripolyphosphate	2.71 ± 0.04	0.22	31.3
potassium chloride	1.93 ± 0.04	0.26	23.3
disodium phosphate (Na ₂ HPO ₄)	1.89 ± 0.04	0.26	22.0
sodium pyrophosphate	1.70 ± 0.04	0.27	20.2
sodium chloride	1.64 ± 0.04	0.28	18.1
PIPES	1.33 ± 0.04	0.30	14.8
β -glycerophosphate	1.31 ± 0.04	0.30	14.9
potassium phosphate (KH ₂ PO ₄)	1.25 ± 0.04	0.31	14.1
TRIS HCl	1.24 ± 0.04	0.31	14.1
BIS-TRIS HCl	1.12 ± 0.03	0.33	13.62
sodium acetate	1.11 ± 0.03	0.33	12.2
sodium phosphate (NaH ₂ PO ₄)	0.95 ± 0.03	0.35	11.0
sodium TAPS	0.90 ± 0.03	0.36	9.55
sodium MES	0.88 ± 0.03	0.36	10.18
sodium MOPS	0.88 ± 0.03	0.36	9.86
sodium TES	0.84 ± 0.03	0.37	9.41
sodium HEPES	0.84 ± 0.03	0.37	9.25
tetrabutylammonium dihydrogen phosphate	0.69 ± 0.03	0.40	9.00
HEPES	0.22 ± 0.02	0.62	0.06
TAPS	0.14 ± 0.02	0.70	0.29
CAPS	0.14 ± 0.02	0.70	0.7
TES	0.12 ± 0.02	0.73	0.25
MOPS	0.10 ± 0.02	0.76	0.04
CHES	0.08 ± 0.02	0.79	0.06
MES	0.08 ± 0.02	0.80	0.15
bicine	0.05 ± 0.02	0.86	0.031
BIS-TRIS propane	0.05 ± 0.02	0.86	0.022
TRIS base	0.03 ± 0.02	0.91	0.1
BIS-TRIS	0.02 ± 0.02	0.93	0.0236
deionized-distilled H ₂ O	0.01 ± 0.02	0.98	0.0023

Table 1. Rs/Rc Values, Expected Sensitivity Factor L, and Dc Conductivity of Several Different Salts, All at 200 mM Concentration

Kelly, A. E., Ou, H. D., Withers, R. & Dötsch, V. JACS 124, 12013-12019 (2002)

Sample preparation

- Solvent: H₂O / D₂O?
- Choice of buffer
- pH/temperature

Buffer chemical shifts as internal pH reference

Effect of pH on ¹H,¹⁵N HSQC spectra

Effect of temperature on ¹H,¹⁵N HSQC spectra

Sample preparation

- Solvent: H₂O / D₂O?
- Choice of buffer
- pH/temperature
- DSS
- Protease inhibitors
- Filtration/centrifugation

