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NMR energies and timescales
• Energy of optical transition (green light, 500 nm) 

= hc / λ = 4 x 10–19 J = 60 kcal mol–1 

• Energy of NMR transition (700 MHz) 
= hv = 5 x 10–25 J = 7 x 10–5 kcal mol–1 

• Thermal energy at room temperature 
= kBT = 4 x 10–21 J = 0.6 kcal mol–1 

• Timescale of spontaneous emission at optical frequencies 
~ 10–15 seconds 

• Timescale of spontaneous emission at NMR frequencies 
= 3πc3/(2hγ2ω3) = 1020 seconds 

• Age of universe = 13.7 billion years ~ 1017 seconds! 

• Spontaneous (or stimulated) emission is completely negligible for NMR. 
Instead, relaxation occurs through decoherence (T2) or exchange of energy 
with the environment – the lattice (T1)

Spin temperature

• Useful to define ‘spin temperature’ based on populations 

• 6 spins in above picture don’t give accurate representation of real NMR samples: 
nα/nβ ≈ 1.0001 for 1H at room temperature, 700 MHz 

• Spin temperature always equals bulk temperature at equilibrium, but applying pulses 
can add energy to the system – spins subsequently ‘cool’ towards equilibrium 

• Negative temperatures are well-defined and are hotter than positive temperatures!
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Pulses add energy to the system!

How much energy do pulses contribute?
• H2O has 110 M concentration of 1H spins 

• Population difference between spin states: 
∆E/kBT ≈ 0.000125 molecule–1 

• Total spins flipped:  
N = (0.000125 molecule–1) x (6 x 1023 molecule mol–1) x (110 mol L–1) 
= 8 x 1021 L-1 

• 180º pulse, entire population is inverted: spin temperature becomes negative!  
Energy absorbed is: 
Q = N ∆E = 0.004 J L–1 

• Volumetric heat capacity of water is 4180 J K–1 L–1, so: 
∆T = 1 µK 

• Completely negligible! BUT total rf energy absorbed can still be significant, 
particularly for salty samples (dielectric heating).



Longitudinal relaxation changes the 
energy of spins

• We have seen that pulsing increases the energy 
contained within the spin system, increasing the spin 
temperature. 

• Longitudinal relaxation is the process by which the 
spins re-equilibrate with the (cooler) environment – a 
process resulting in the transfer of energy to the 
surrounding lattice (environment). 

• This can only occur through specific microscopic 
mechanisms…

A thermal description of cross-relaxation

• Cross-relaxation: the effect of neighbouring spins on relaxation processes 
e.g. faster relaxation of isolated hot spins in a bath of cooler spins 

• Cross-relaxation processes must have a microscopic mechanism!
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The microscopic mechanism of relaxation: 
fluctuating local magnetic fields

• Relaxation is caused by locally fluctuating magnetic fields 

• These can have multiple origins – dipole-dipole interactions, 
chemical shift anisotropy, paramagnetism, chemical 
exchange… 

• Effect on spin relaxation depends on timescale (frequency) of 
fluctuations 

• Pulses – weak magnetic fields oscillating on-resonance at the 
Larmor frequency – cause transitions between energy levels. In 
an identical way, random fluctuations in local fields at the 
Larmor frequency cause longitudinal relaxation. 

• Transverse relaxation is caused by fluctuations at any frequency

Sources of fluctuating magnetic fields: 
dipole-dipole interactions

• All nuclei (I≠0) have a magnetic dipole 
that creates a local magnetic field 

• Field strength is proportional to 
gyromagnetic ratio – strongest for 1H, 
weak for 2H, 15N 

• Field is spatially dependent – effect of 
neighbouring nuclei depends on 
relative orientation 

• e.g. average 1H dipolar field 
experienced by 15N nucleus in amide 
(r = 1.06 Å) is 2.4 mT 
– just 0.015% of static field (150 ppm)



Sources of fluctuating magnetic fields: 
chemical shift anisotropy

• Electron distribution is not perfectly symmetric 
about a nucleus 

• The extent of shielding depends on the 
orientation of nearby bonds relative to the 
static field – i.e. on the orientation of the 
molecule 

• The ‘chemical shift’ is not really a number – it’s 
a tensor! What we think of as the chemical 
shift is the average over all orientations 
(isotropic tumbling) 

• CSA approx. equal to chemical shift range of 
nucleus, e.g. 170 ppm for 15N 

• Fluctuations in local field proportional to B0 – 
becomes significant at high fields

Sources of fluctuating magnetic fields: 
chemical exchange

• Chemical exchange = chemical reaction 
converting molecule into a different chemical 
species, e.g. 

• folding / unfolding 

• ligand binding 

• cis / trans isomerisation 

• aromatic ring flips 

• If the chemical shift is different in the new state, 
the nucleus experiences a shift in the local 
magnetic field

free ⌦ bound

∆δ ~ 1 ppm

Bloc ~ B0 ∆δ

Summary of local field sources
• dipolar: Bloc ∝ γH/r3 ≈ 2.4 mT (150 ppm) 

independent of B0 

• CSA: Bloc ∝ B0· Δσ (170 ppm) 
proportional to B0 

• chemical exchange: Bloc ~ B0 · ∆δ ~ 1 ppm  
proportional to B0 

• Paramagnetism, quadrupolar interactions (2H), scalar 
couplings… 

• All fluctuations are much weaker than the static field, B0 

• Sensitivity of spins to these local field fluctuations depends on 
their gyromagnetic ratio – 1H most sensitive, 15N least sensitive

local field is vector sum of lots of interactions,
and depends strongly on orientation of molecule

Summary of local field sources



Quantifying fluctuations

• Rotational diffusion is a 
stochastic process – molecules 
rotate in small, random jumps 

• Field fluctuations can be 
characterised by a correlation 
function: 

• Simple rotational diffusion can 
be described by an 
exponential correlation function 
with correlation time τc:
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• Correlation time 
proportional to molecular 
weight – big molecules 
tumble slowly

Spectral densities

• The correlation time τc describes a rough 
‘frequency’, 1/τc, where the fluctuations are strong 

• More precise calculations need to know exactly ‘how 
much fluctuation’ there is at a given frequency 

• To determine this we take the Fourier transform of the 
correlation function – the spectral density function 
J(ω):
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