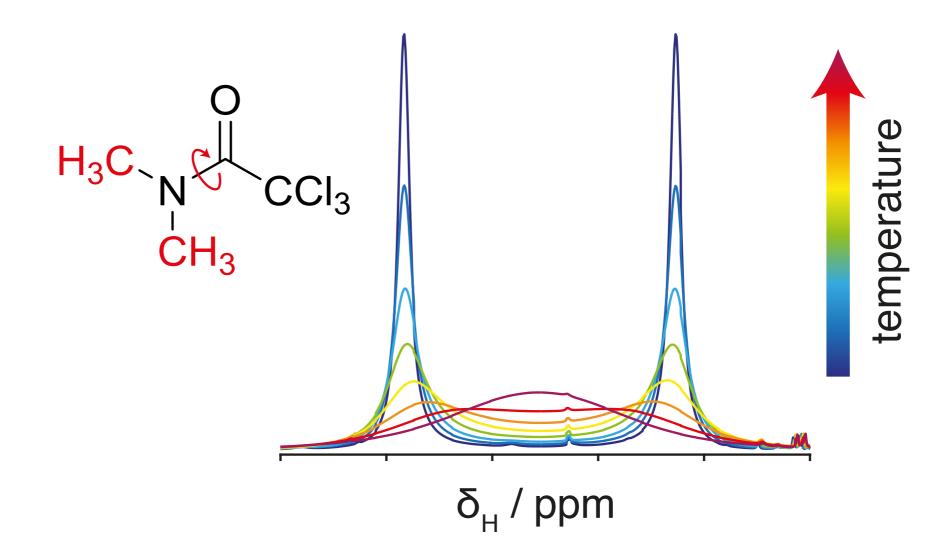
Chemical Exchange

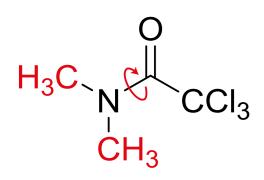
Chris Waudby

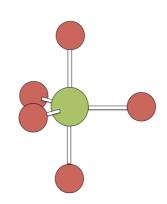
www.waudbylab.org

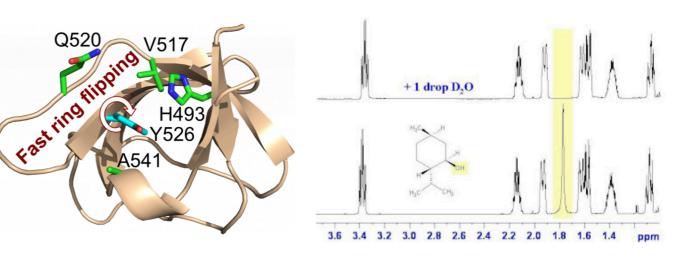


NMR Theory Club 10 Dec 2025

Chemical exchange is everywhere!





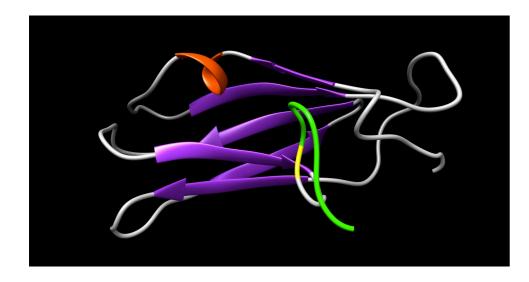


bond rotation

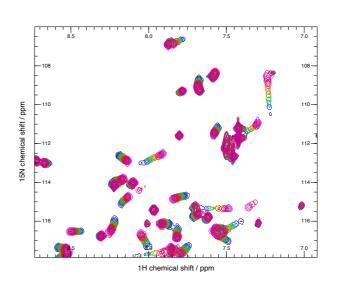
fluxionality

ring flips

hydrogen exchange



protein folding, unfolding and intermediate formation



ligand binding / host-guest recognition

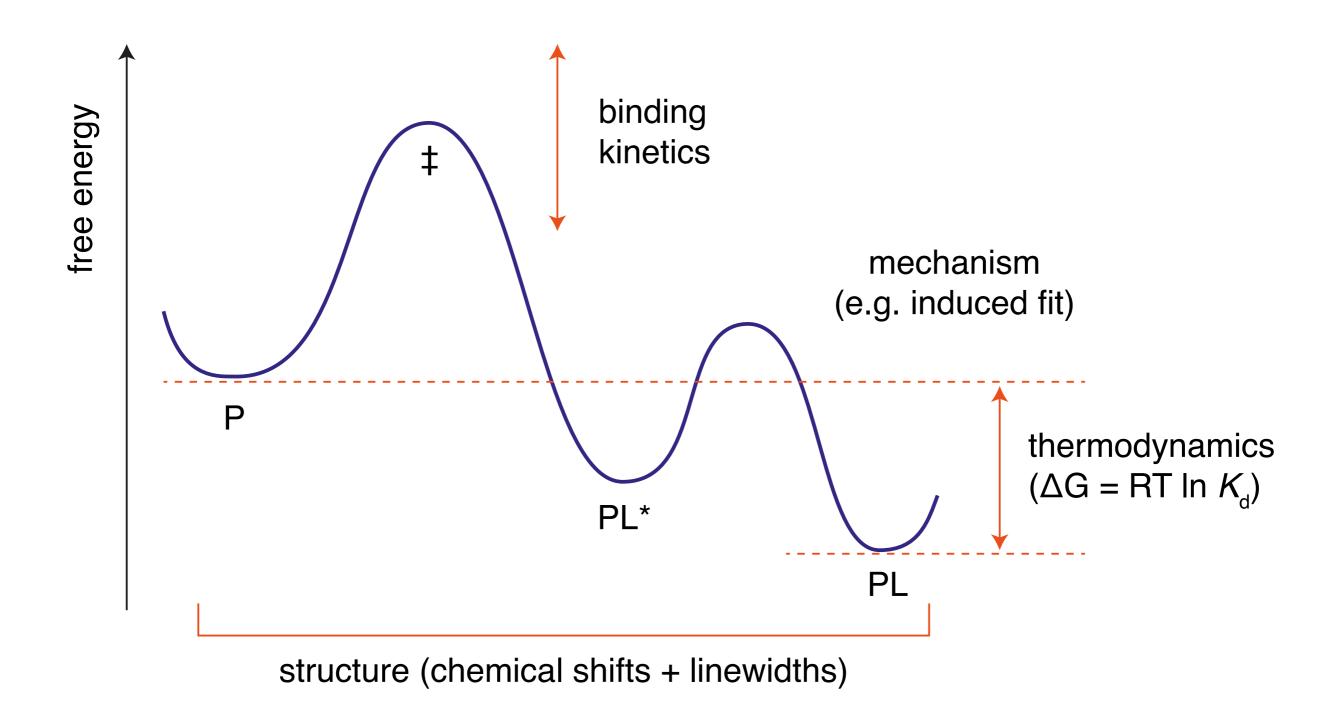
$$A + L \xrightarrow{k_{\text{on,A}}} AL$$

$$k_{\text{BA}} \downarrow k_{\text{AB}} \downarrow k_{\text{BA'}} \downarrow k_{\text{AB}}$$

$$B + L \xrightarrow{k_{\text{on,B}}} BL$$

allostery

What information can NMR provide?



A note on units

linear frequencies = $2\pi x$ angular frequencies

measured in **Hz** (cycles per second = 1 / period)

usually written as **v**, Δ**v**

relaxation rates (R₁, R₂) are **not** measured in Hz and **cannot** be compared with
angular frequency differences

first-order rate constants (e.g. k_{off} , k_{ex}) are **not** measured in Hz and **cannot** be compared with angular frequency differences

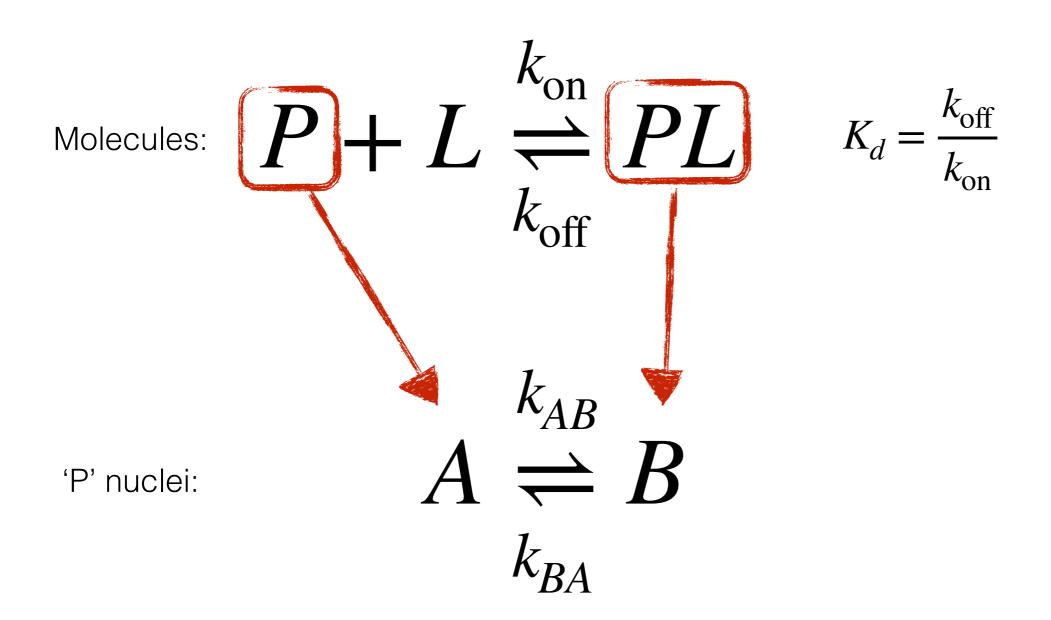
measured in **s**-1 (**rad s**-1, but radians are implicit)

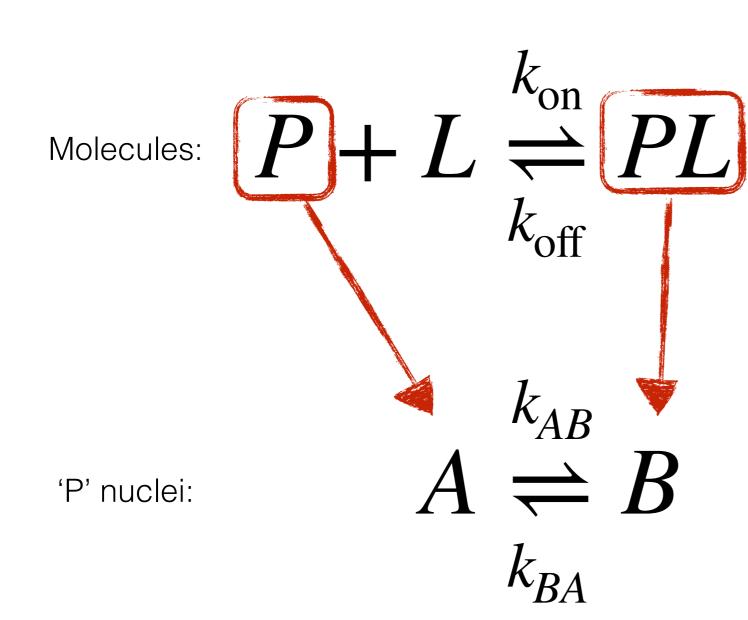
usually written as ω , $\Delta\omega$

relaxation rates (R₁, R₂) are also measured in s⁻¹ and can be compared with angular frequency differences

first-order rate constants (e.g. $k_{\rm off}$, $k_{\rm ex}$) are also measured in s⁻¹ and can be compared with angular frequency differences

$$P + L \stackrel{k_{\text{on}}}{\rightleftharpoons} PL$$
 $K_d = \frac{k_{\text{off}}}{k_{\text{on}}}$



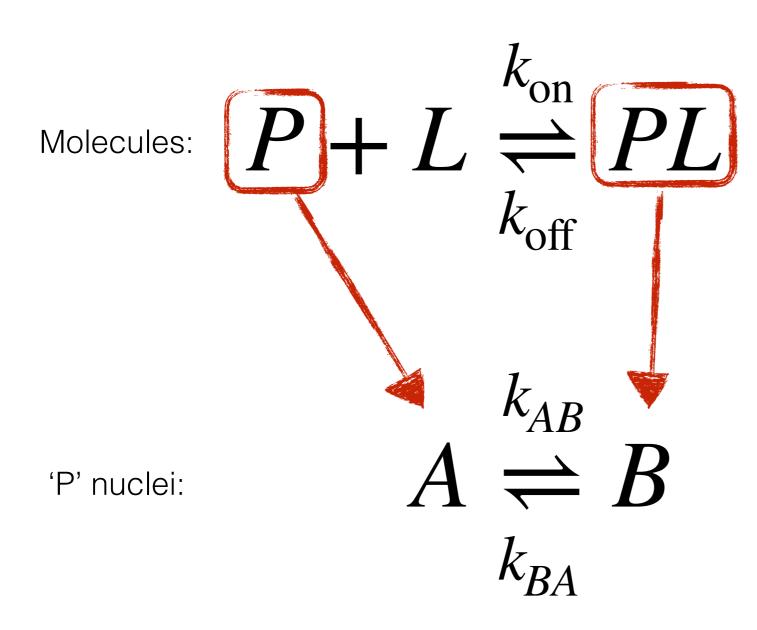


$$K_d = \frac{k_{\text{off}}}{k_{\text{on}}}$$

$$k_{AB} = k_{on}[L]$$

$$k_{BA} = k_{\text{off}}$$

$$L = \frac{1}{2} \left[L_0 - P_0 - K_d + \sqrt{\left(L_0 + P_0 + K_d \right)^2 - 4P_0 L_0} \right]$$



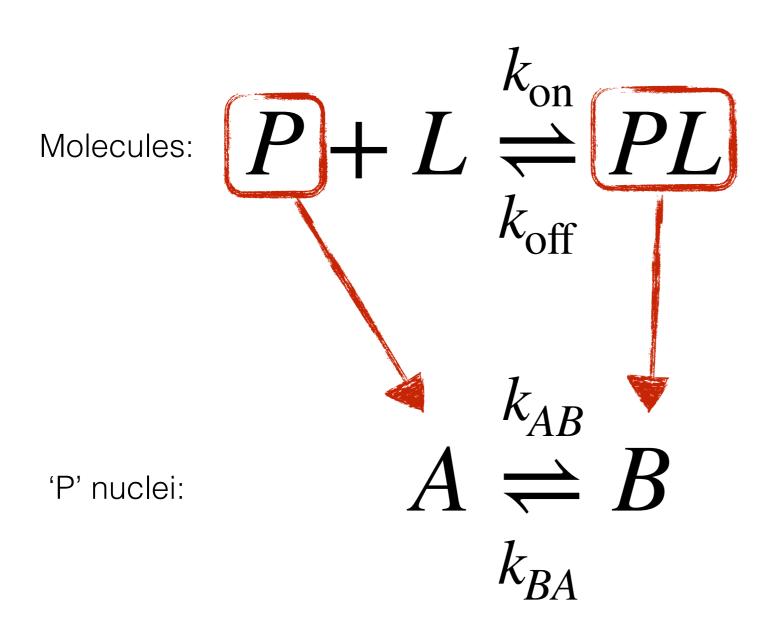
$$K_d = \frac{k_{\text{off}}}{k_{\text{on}}}$$

$$k_{AB} = k_{on}[L]$$

$$k_{BA} = k_{\text{off}}$$

$$L = \frac{1}{2} \left[L_0 - P_0 - K_d + \sqrt{\left(L_0 + P_0 + K_d \right)^2 - 4P_0 L_0} \right]$$

At dynamic equilibrium, chemical exchange processes are **always** first order (because perturbations from fluctuations are small)



$$K_d = \frac{k_{\text{off}}}{k_{\text{on}}}$$

$$k_{AB} = k_{on}[L]$$

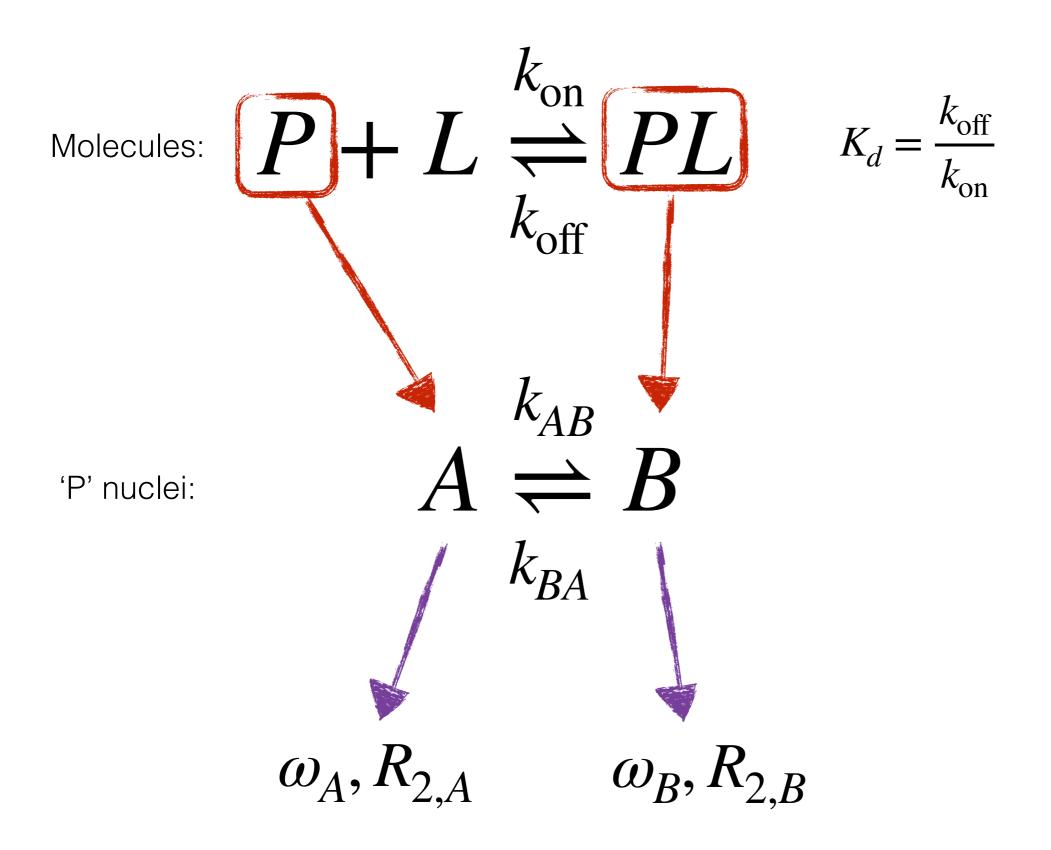
$$k_{BA} = k_{\text{off}}$$

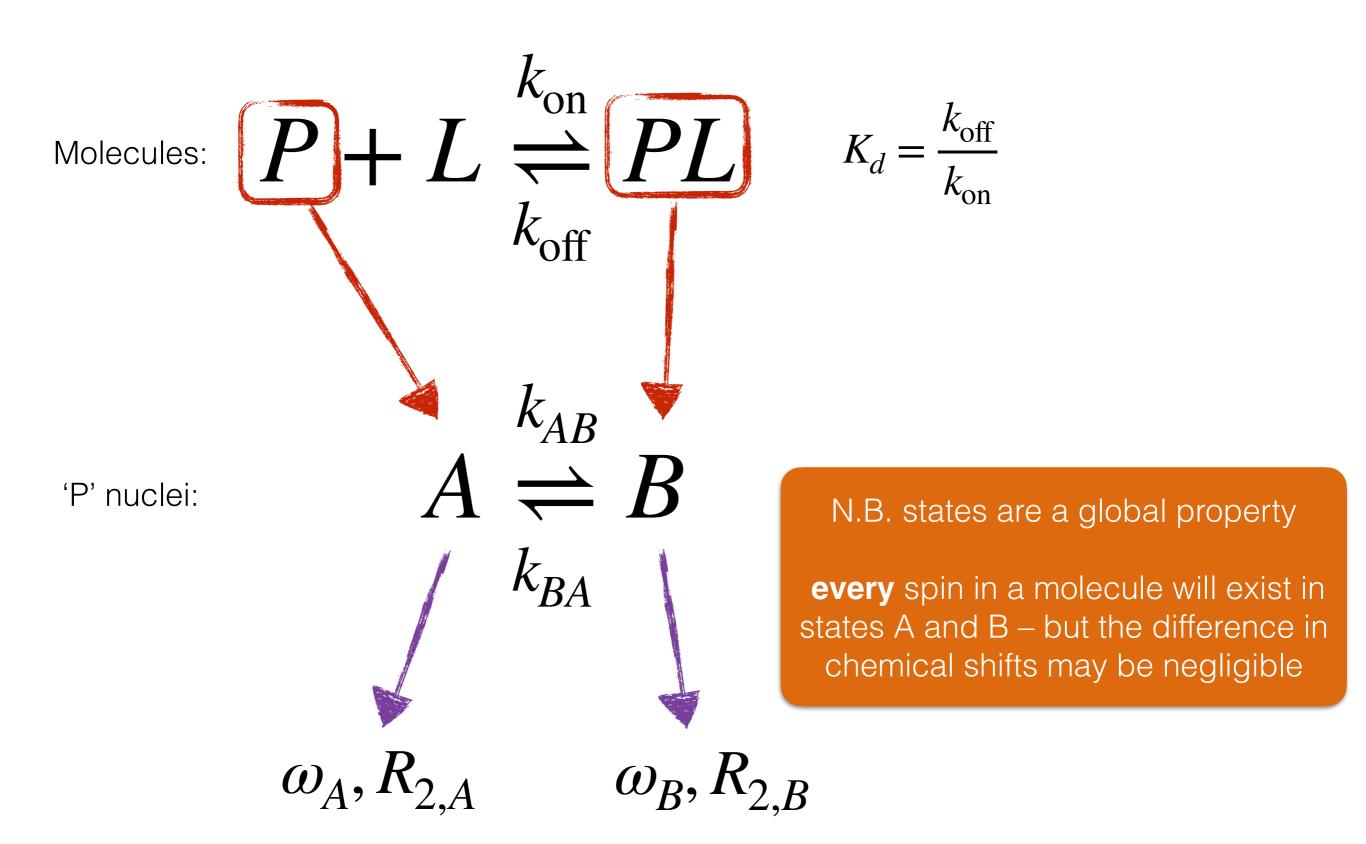
$$L = \frac{1}{2} \left[L_0 - P_0 - K_d + \sqrt{\left(L_0 + P_0 + K_d \right)^2 - 4P_0 L_0} \right]$$

Equilibrium populations:

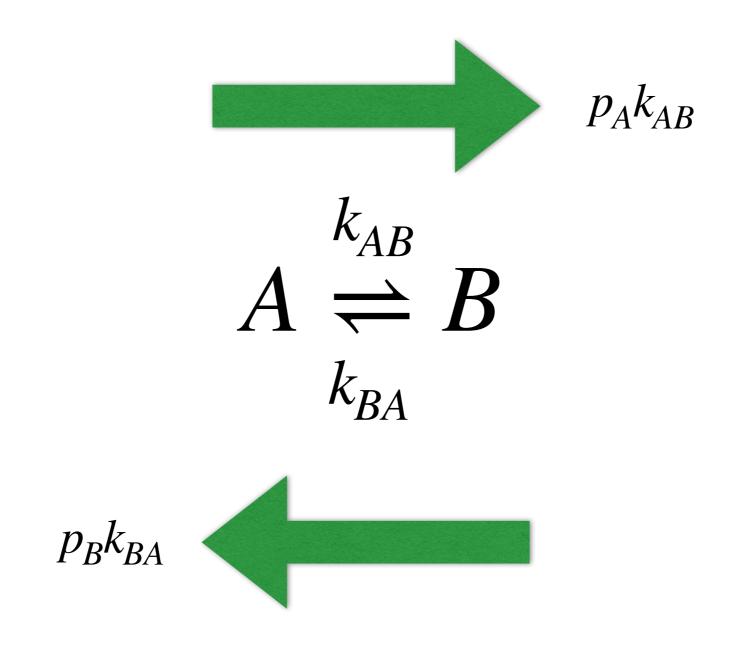
$$p_A = \frac{k_{BA}}{k_{AB} + k_{BA}}$$
 $p_B = \frac{k_{AB}}{k_{AB} + k_{BA}}$

At dynamic equilibrium, chemical exchange processes are **always** first order (because perturbations from fluctuations are small)

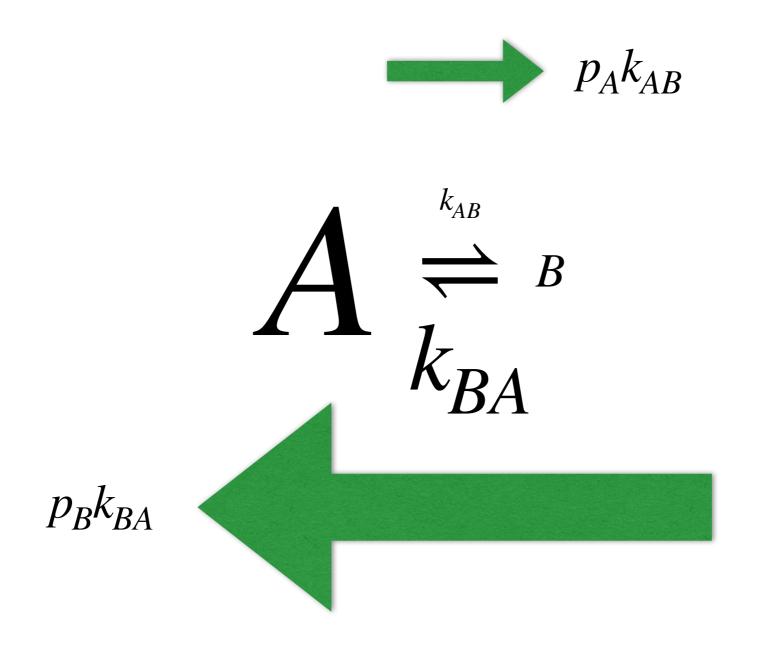




Forward and backward flux is equal at dynamic equilibrium



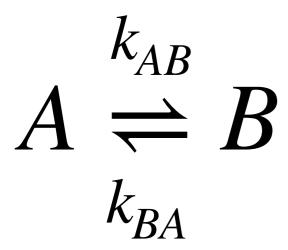
Forward and backward flux is equal at dynamic equilibrium



Forward and backward flux is equal at dynamic equilibrium



Chemical exchange kinetics at dynamic equilibrium



We can write the rate equations:

$$\frac{dA}{dt} = -k_{AB}A + k_{BA}B$$

$$\frac{dB}{dt} = k_{AB}A - k_{BA}B$$

Chemical exchange kinetics at dynamic equilibrium

$$A \rightleftharpoons B$$
 k_{BA}

We can write the rate equations:

$$\frac{dA}{dt} = -k_{AB}A + k_{BA}B$$

$$\frac{dB}{dt} = k_{AB}A - k_{BA}B$$

Or more compactly using matrix notation:

$$\frac{d\overrightarrow{M}}{dt} = \frac{d}{dt} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -k_{AB} & k_{BA} \\ k_{AB} & -k_{BA} \end{pmatrix} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = K \cdot \overrightarrow{M}$$

Chemical exchange kinetics at dynamic equilibrium

$$A \rightleftharpoons B$$
 k_{BA}

We can write the rate equations:

$$\frac{dA}{dt} = -k_{AB}A + k_{BA}B$$

$$\frac{dB}{dt} = k_{AB}A - k_{BA}B$$

Or more compactly using matrix notation:

$$\frac{d\overrightarrow{M}}{dt} = \frac{d}{dt} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -k_{AB} & k_{BA} \\ k_{AB} & -k_{BA} \end{pmatrix} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = K \cdot \overrightarrow{M}$$

The solution to this is:

$$\overrightarrow{M}(t) = e^{Kt} \cdot \overrightarrow{M}(0)$$

K is the exchange operator (or superoperator if you're being fancy!)

Eigenvalues of the exchange operator

$$A \stackrel{k_{AB}}{\rightleftharpoons} B$$
 k_{BA}

The exchange operator, **K**:

$$K = \begin{pmatrix} -k_{AB} & k_{BA} \\ k_{AB} & -k_{BA} \end{pmatrix}$$

has two eigenvalues:

$$\lambda = \left\{0, k_{AB} + k_{BA}\right\}$$

These represent the chemical relaxation rates of the system (i.e. the rates of return to equilibrium following a perturbation)

One eigenvalue is always zero – this just represents the equilibrium state that does not change over time

The second eigenvalue is often referred to as the exchange rate, $k_{\text{ex}} = k_{\text{AB}} + k_{\text{BA}}$.

Eigenvalues of the exchange operator

$$A \rightleftharpoons B$$
 k_{AB}
 k_{BA}

The exchange operator, **K**:

$$K = \begin{pmatrix} -k_{AB} & k_{BA} \\ k_{AB} & -k_{BA} \end{pmatrix}$$

Knowledge of the exchange rate is critical to understanding chemical exchange in NMR: It is the quantity against which differences in spectroscopic parameters are compared in order to define fast, intermediate and slow exchange regimes

One eigenvalue is always zero – this just represents the equilibrium state that does not change over time

The second eigenvalue is often referred to as the exchange rate, $k_{\text{ex}} = k_{\text{AB}} + k_{\text{BA}}$.

Example

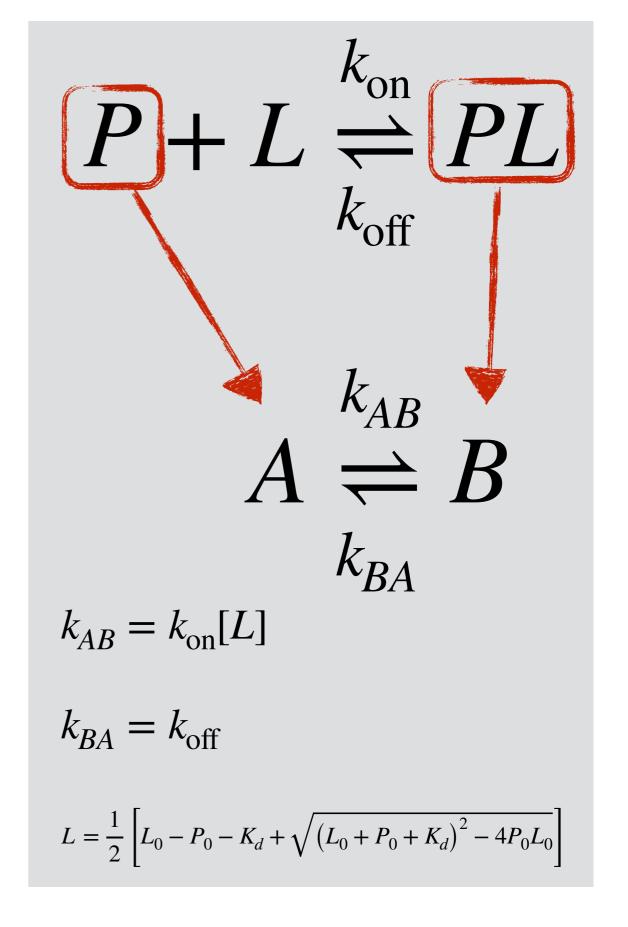
$$k_{\text{ex}} = k_{AB} + k_{BA}$$
$$= k_{\text{on}}[L] + k_{\text{off}}$$

e.g.
$$K_d = 20 \mu M$$

 $k_{off} = 1000 \text{ s}^{-1}$
 $=> k_{on} = 5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$

$$[P]_0 = 100 \mu M$$

 $[L]_0 = 50 \mu M$



Example

$$k_{\text{ex}} = k_{AB} + k_{BA}$$
$$= k_{\text{on}}[L] + k_{\text{off}}$$

e.g.
$$K_d = 20 \mu M$$

 $k_{off} = 1000 \text{ s}^{-1}$
 $=> k_{on} = 5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$

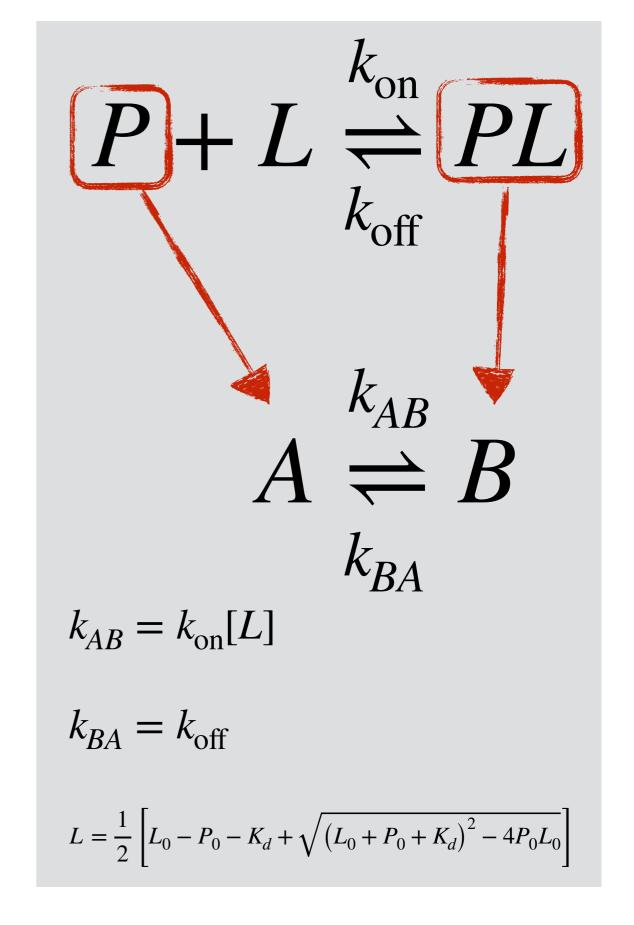
$$[P]_0 = 100 \mu M$$

 $[L]_0 = 50 \mu M$

$$=> [L] = 12 \mu M$$

=> $k_{AB} = k_{on}[L] = 600 s^{-1}$

$$k_{\rm ex} = 1600 \, {\rm s}^{-1}$$



Example

$$k_{\text{ex}} = k_{AB} + k_{BA}$$
$$= k_{\text{on}}[L] + k_{\text{off}}$$

e.g.
$$K_d = 20 \mu M$$

 $k_{off} = 1000 \text{ s}^{-1}$
 $=> k_{on} = 5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$

$$[P]_0 = 100 \mu M$$

 $[L]_0 = 50 \mu M$

$$=> [L] = 12 \mu M$$

=> $k_{AB} = k_{On}[L] = 600 s^{-1}$

$$k_{\rm ex} = 1600 \, {\rm s}^{-1}$$

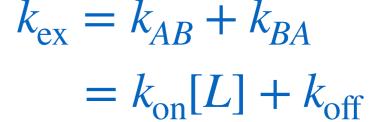
$$\Delta\omega = \gamma B_0 \Delta\delta$$

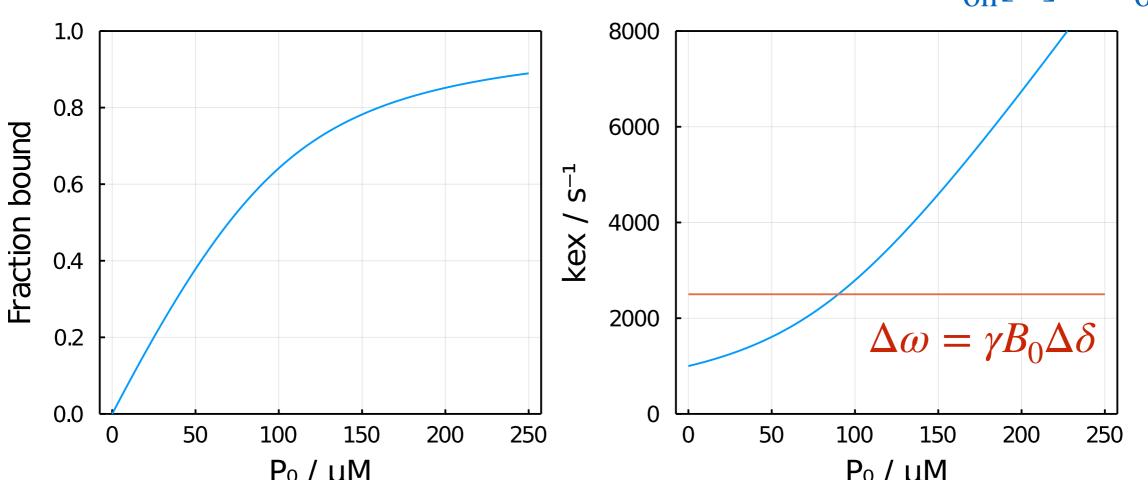
e.g.
$$\Delta \delta$$
 (¹H) = 0.5 ppm 800 MHz

$$\Delta V = 400 \text{ Hz}$$

$$\Delta \omega = 2\pi \Delta V = 2500 \text{ s}^{-1}$$

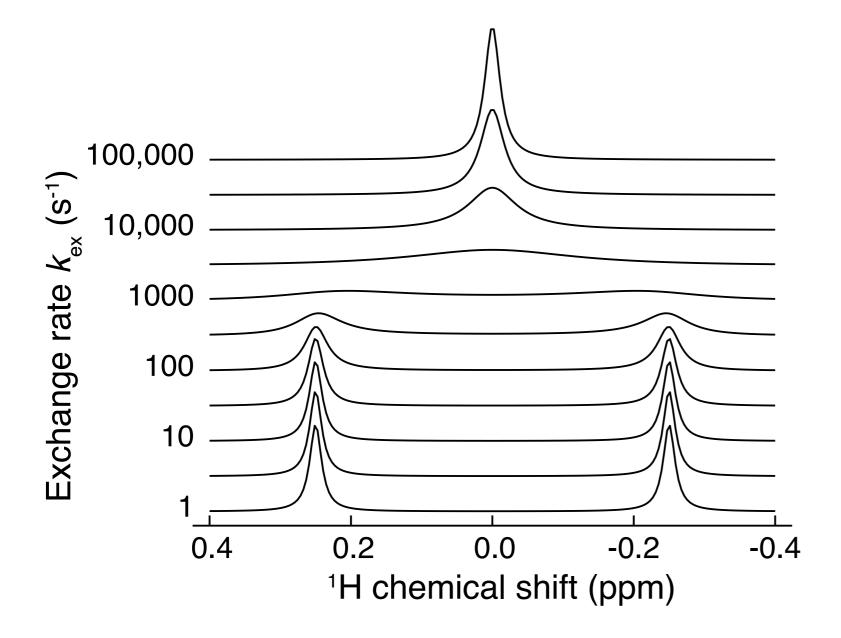
The exchange rate increases along a titration





$$K_{\rm d} = 20 \ \mu {\rm M}$$
 $k_{\rm off} = 1000 \ {\rm s}^{-1}$
 $[{\rm P}]_0 = 100 \ \mu {\rm M}$
 $\Delta \delta \, (^1{\rm H}) = 0.5 \ {\rm ppm} \, (800 \ {\rm MHz})$

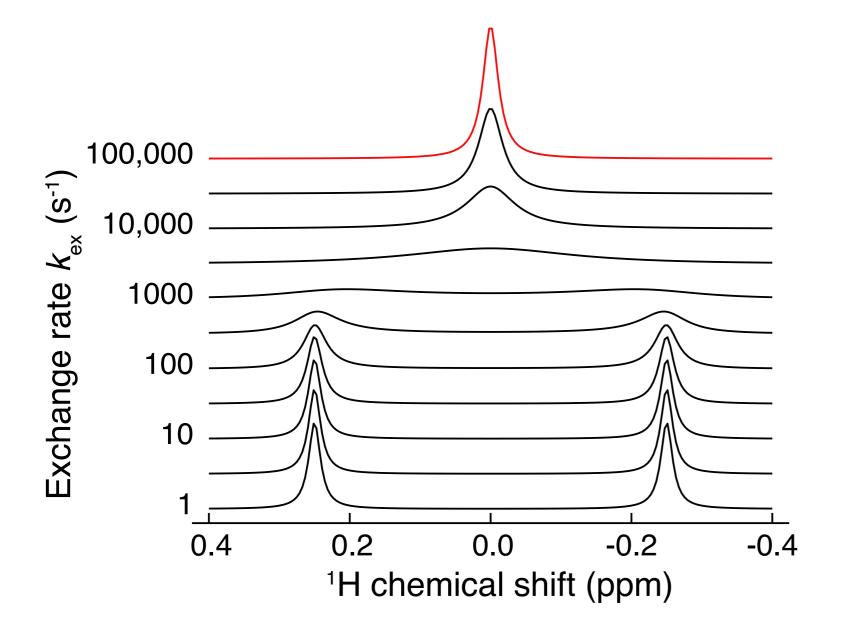
Chemical exchange regimes



two sites, related by symmetry => equal populations

Simulated resonance line shapes for a ¹H chemical shift difference of 0.5 ppm at 800 MHz ($\Delta \omega = 2500$ s⁻¹) and the indicated exchange rate, $k_{\rm ex}$

Chemical exchange regimes: fast exchange ($k_{ex} \gg \Delta\omega$)

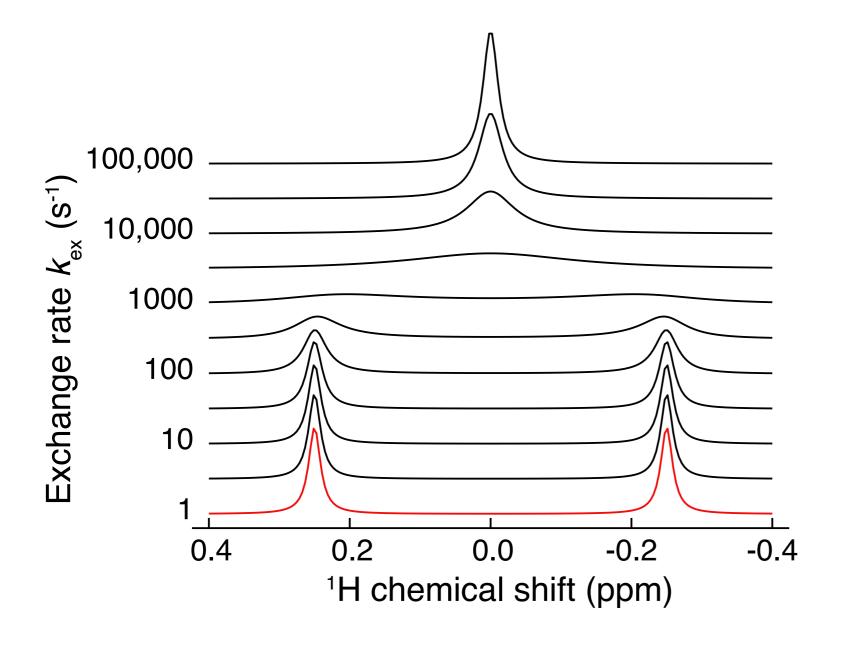


Molecules are jumping between states so rapidly that only a single averaged frequency can be detected

Single resonance observed at average of individual chemical shifts

Linewidth (R₂) is average of individual resonances

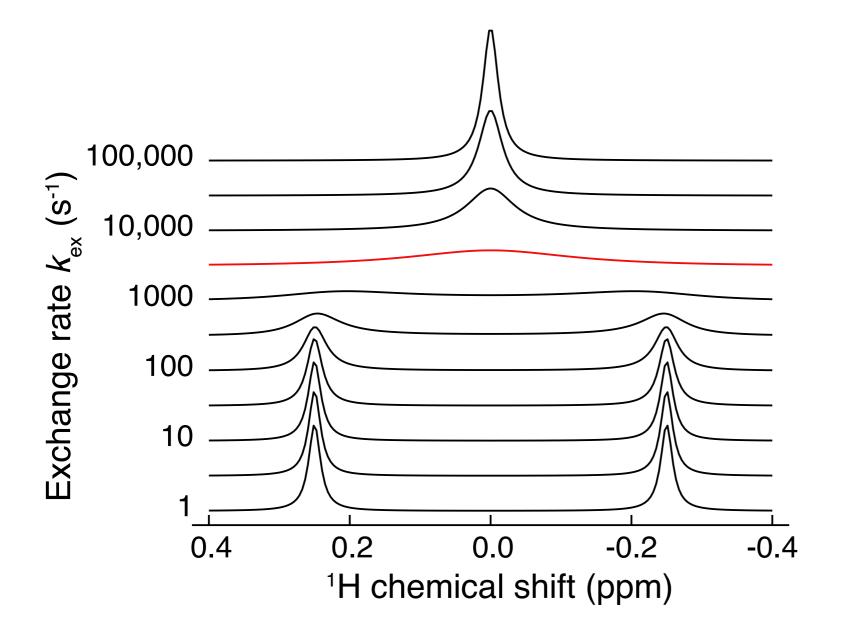
Chemical exchange regimes: slow exchange ($k_{ex} << \Delta \omega$)



Molecules effectively never exchange during free induction decay – like two separate chemical species

Individual resonances observed

Chemical exchange regimes: intermediate exchange $(k_{\text{ex}} \approx \Delta \omega)$

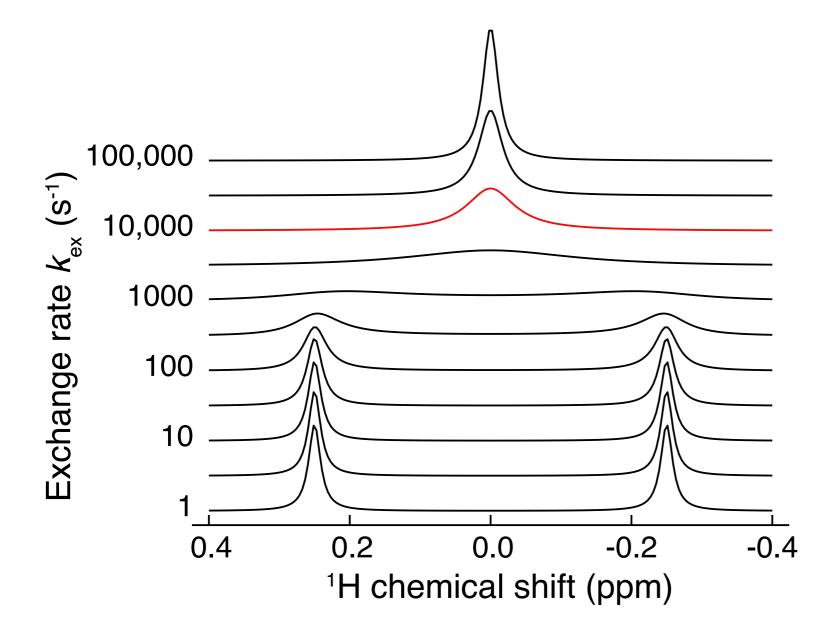


Severe line broadening results when the exchange rate is comparable to the frequency difference – the intermediate exchange regime

The coalescence point, defined by vanishing first and second derivates, occurs when $k_{\rm ex} = |\Delta\omega|/\sqrt{2}$

Identification of the coalescence point provides a simple way to determine exchange rates – but more sophisticated approaches are available!

Chemical exchange regimes: fast-intermediate exchange ($k_{ex} > \Delta \omega$)



As a signal in fast exchange approaches the coalescence point, its line width increases and intensity decreases due to **exchange broadening**:

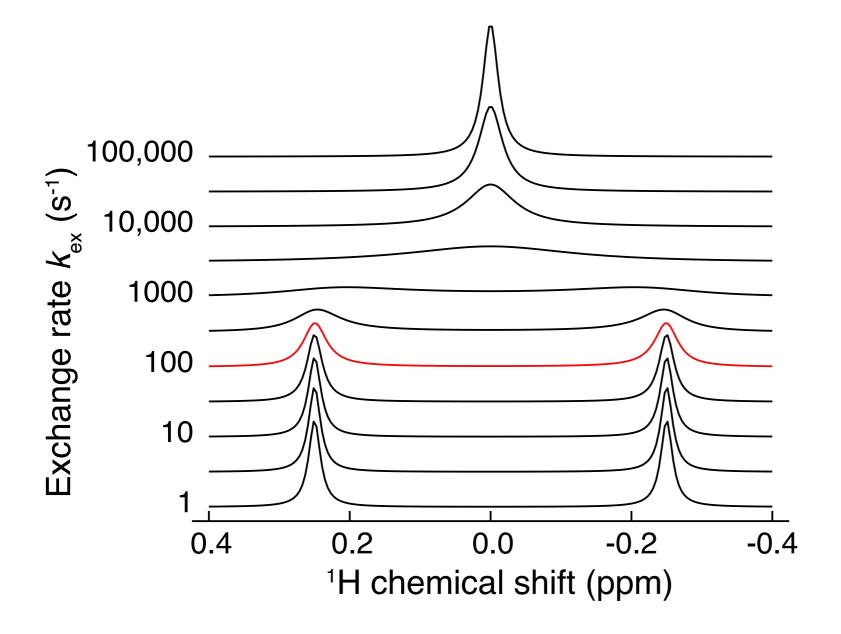
$$R_{2,\text{obs}} = R_{2,0} + R_{\text{ex}}$$

The exchange broadening contribution depends on the populations, exchange rate and frequency difference:

$$R_{\rm ex} = \frac{p_A p_B \Delta \omega^2}{k_{\rm ex}}$$

Note that the frequency difference is also proportional to the magnetic field strength – exchange broadening is more severe at higher field strengths

Chemical exchange regimes: slow-intermediate exchange ($k_{ex} < \Delta \omega$)



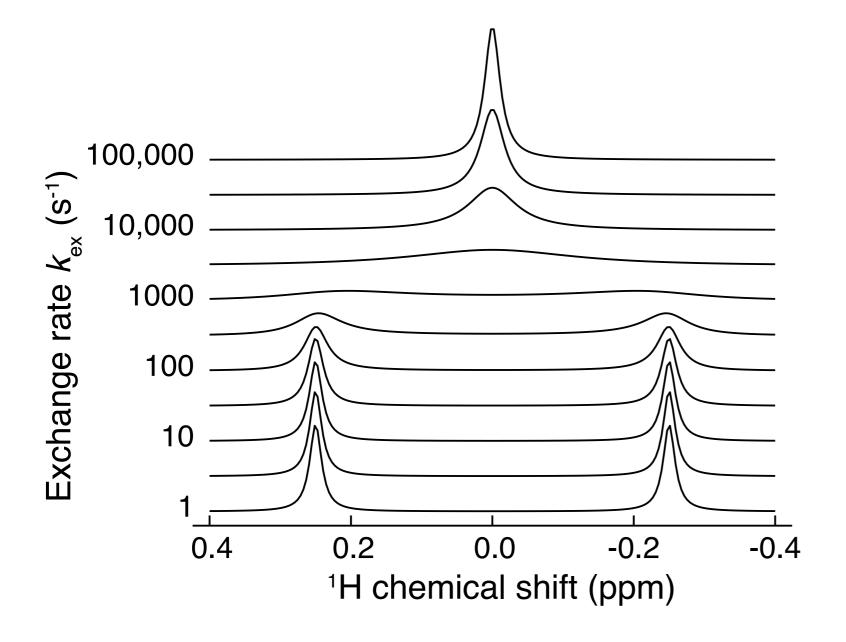
Resonances in slow exchange approaching the coalescence point also experience lifetime line broadening:

$$R_{\rm ex,A} = k_{AB}$$

This arises from the irreversible loss of magnetisation from spins exchanging during the FID

Lifetime line broadening is independent of the chemical shift difference, population and magnetic field strength

Chemical exchange regimes: how sensitive is NMR?



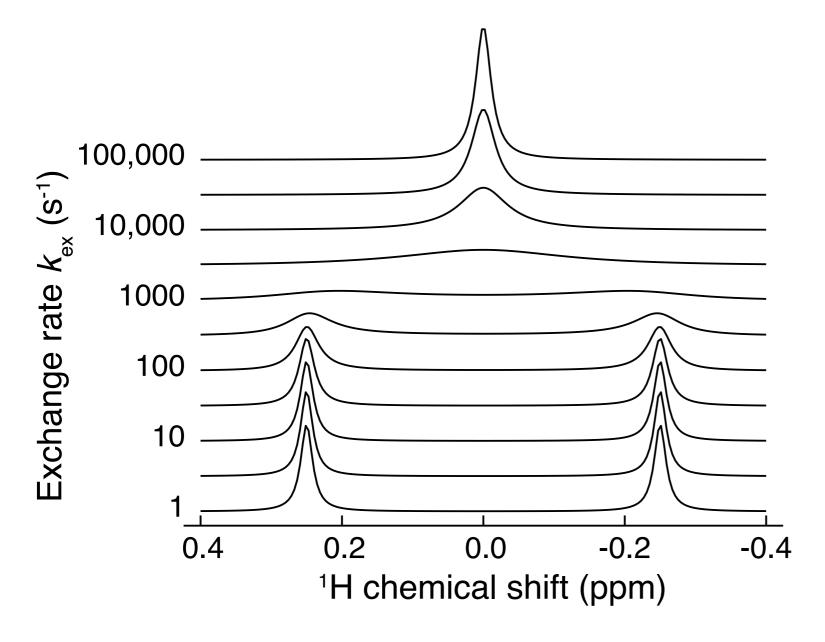
Spectra are most sensitive to exchange in the vicinity of the coalescence point

Line broadening effects can be observed over a wide range of parameter space, approximately:

$$\Delta\omega$$
 / 50 < $k_{\rm ex}$ < 50 $\Delta\omega$

Different spins within a molecule can also have difference $\Delta \omega$, bringing sensitivity to an even wider range of exchange rates!

Chemical exchange regimes: why is NMR unique?

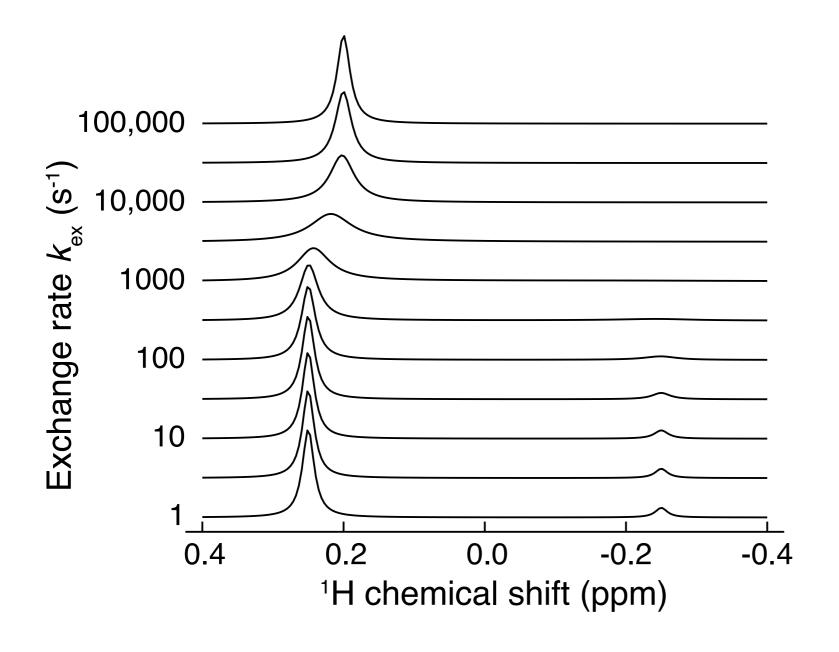


Why do other forms of spectroscopy (e.g. CD, UV, IR, fluorescence) not see similar chemical exchange effects?

...because the relevant frequency differences are **much** bigger!

e.g. two species absorbing at 500 nm and 520 nm have frequencies of 6 x 10¹⁴ Hz and 5.8 x 10¹⁴ Hz

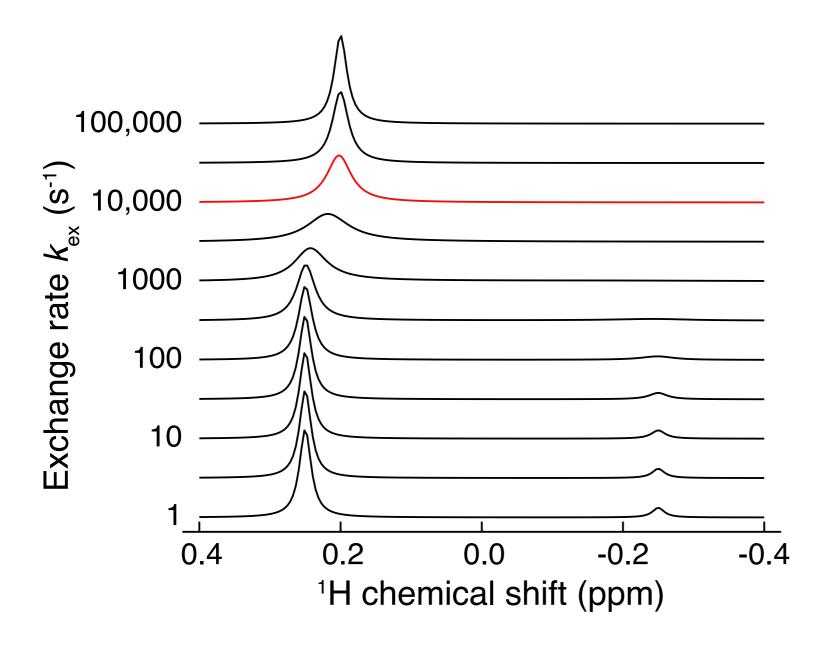
 $=> \Delta \omega \approx 1.2 \times 10^{14} \text{ s}^{-1}!$



Unequal populations can arise in many circumstances:

- early stages of a titration
- sparsely populated intermediates in biomolecules
- spins in exchange with the solvent (solvent is the major state!)

Simulated resonance line shapes for unequal populations (90% / 10%)



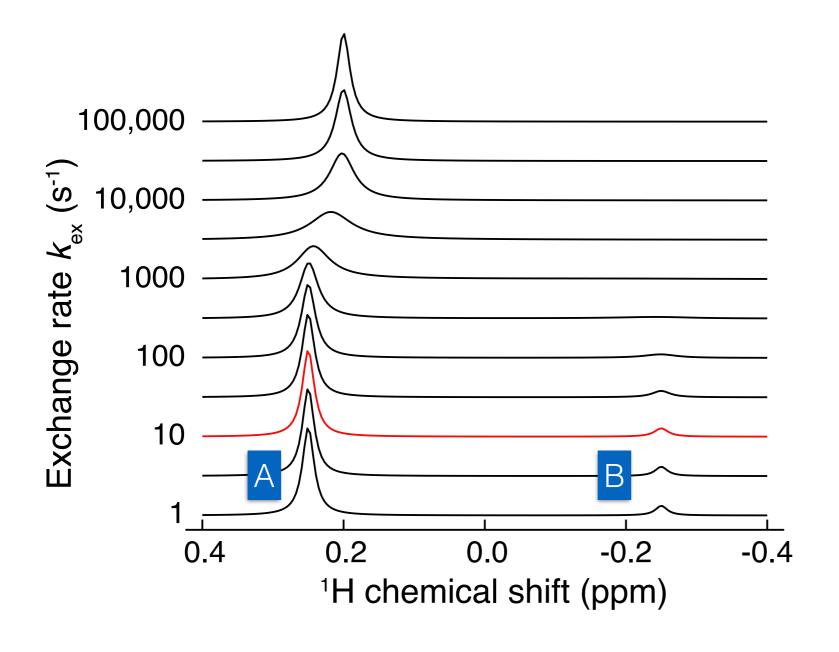
In fast exchange, we observe a single resonance at the population-weighted average frequency:

$$\omega_{obs} = p_A \omega_A + p_B \omega_B$$

with exchange broadening as for symmetric populations:

$$R_{\rm ex} = \frac{p_A p_B \Delta \omega^2}{k_{\rm ex}}$$

Simulated resonance line shapes for unequal populations (90% / 10%)



In slow exchange, we observe two resonances with population-weighted amplitudes

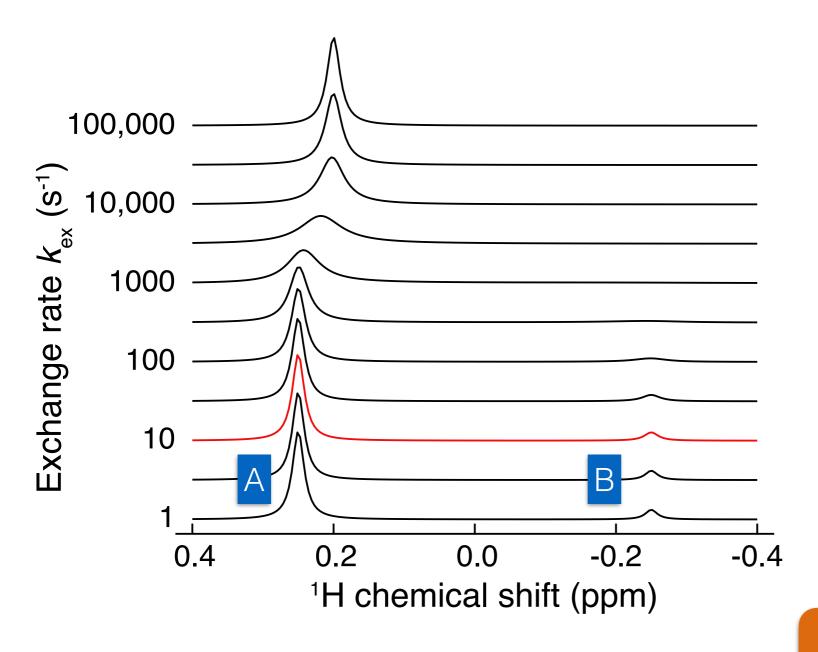
Major and minor peaks both exhibit **lifetime line broadening**, but the impact of this is very different for the two peaks

$$R_{\rm ex,A} = k_{AB}$$
 small

$$R_{\rm ex,B} = k_{BA}$$
 LARGE

Simulated resonance line shapes for unequal populations (90% / 10%)

intensity
$$\sim \frac{\text{amplitiude}}{R_{2,0} + R_{\text{ex}}}$$



Simulated resonance line shapes for unequal populations (90% / 10%)

In slow exchange, we observe two resonances with population-weighted amplitudes

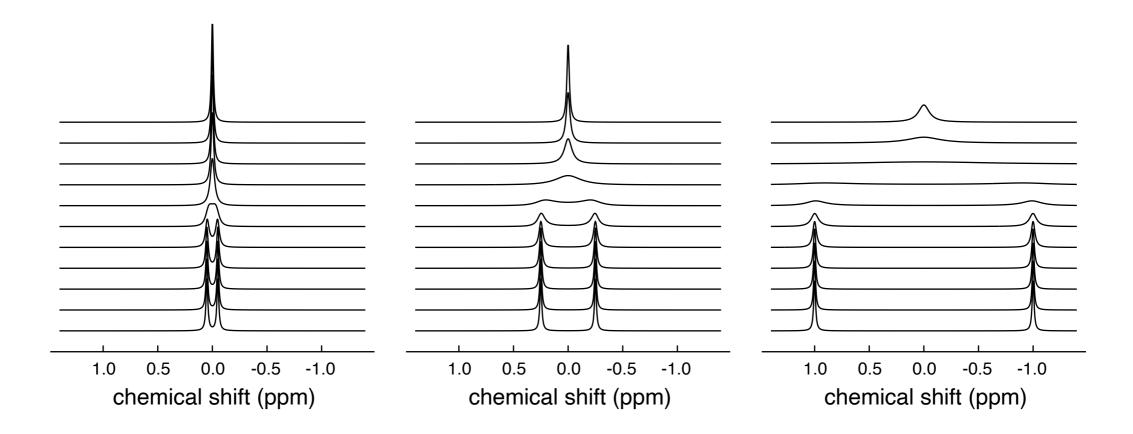
Major and minor peaks both exhibit **lifetime line broadening**, but the impact of this is very different for the two peaks

$$R_{\rm ex,A} = k_{AB}$$
 small

$$R_{\rm ex,B} = k_{BA}$$
 LARGE

Minor states are often effectively 'invisible' and experiments such as CEST and CPMG may be required to detect and probe them

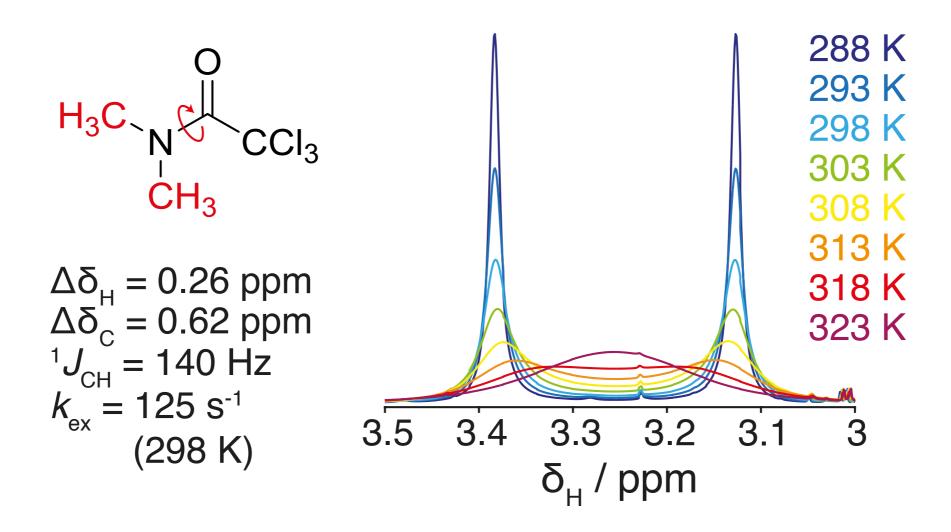
Modulating chemical exchange regimes



Varying the magnetic field strength will vary $\Delta \omega = \gamma \Delta \delta B_0$

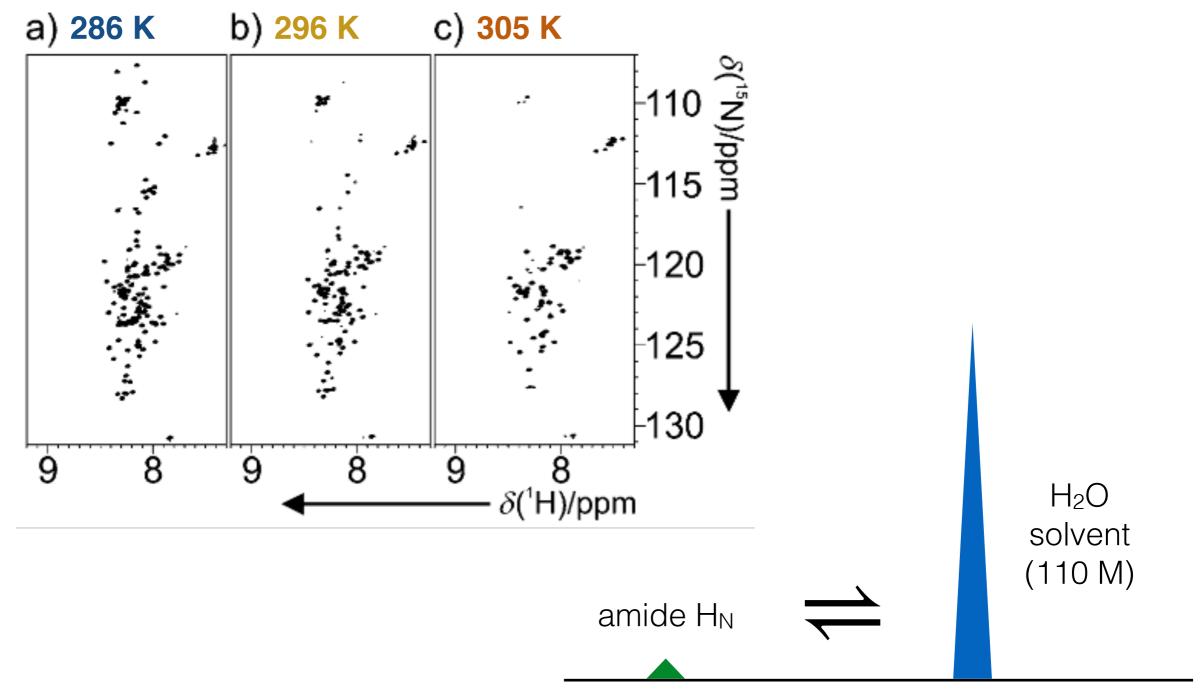
Alternatively, most molecules will contain a range of spins that experience a variety of chemical shift changes between states

Modulating chemical exchange regimes



Changing the temperature can change the kinetics of the exchange process

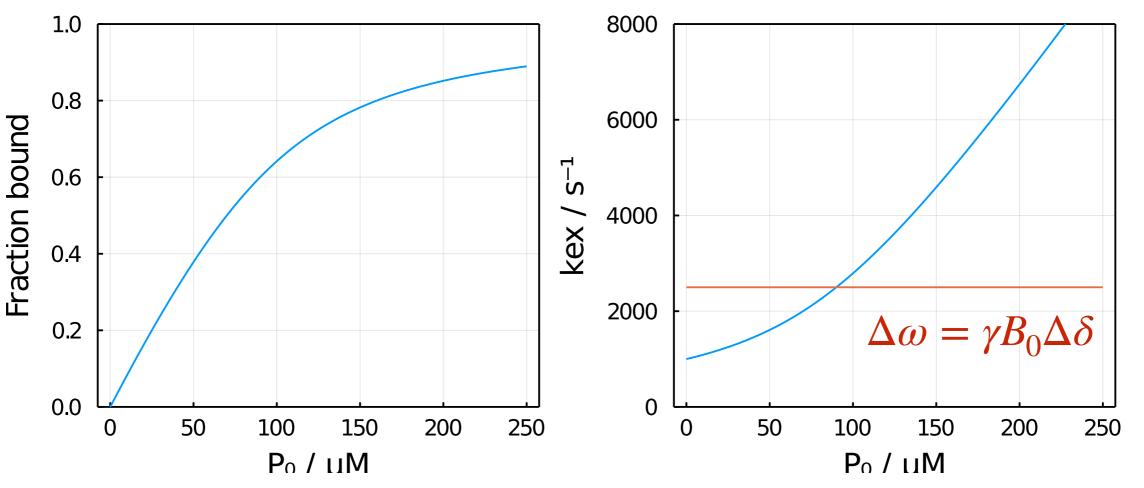
Application of VT NMR to intrinsically disordered proteins



lifetime line broadening due to solvent hydrogen exchange of amide minor state leads to loss of resonances in 2D spectra

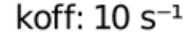
Titration experiments

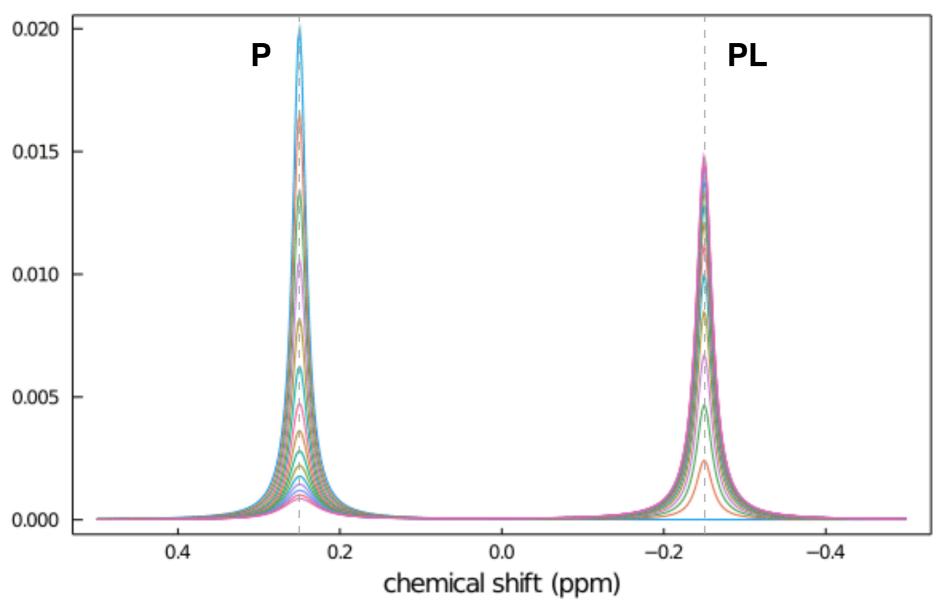
$$k_{\text{ex}} = k_{AB} + k_{BA}$$
$$= k_{\text{on}}[L] + k_{\text{off}}$$



$$K_{\rm d} = 20 \ \mu {\rm M}$$
 $k_{\rm off} = 1000 \ {\rm s}^{-1}$
 $[{\rm P}]_0 = 100 \ \mu {\rm M}$
 $\Delta \delta \, (^1{\rm H}) = 0.5 \ {\rm ppm} \, (800 \ {\rm MHz})$

Titration experiments: effect of varying dissociation rate



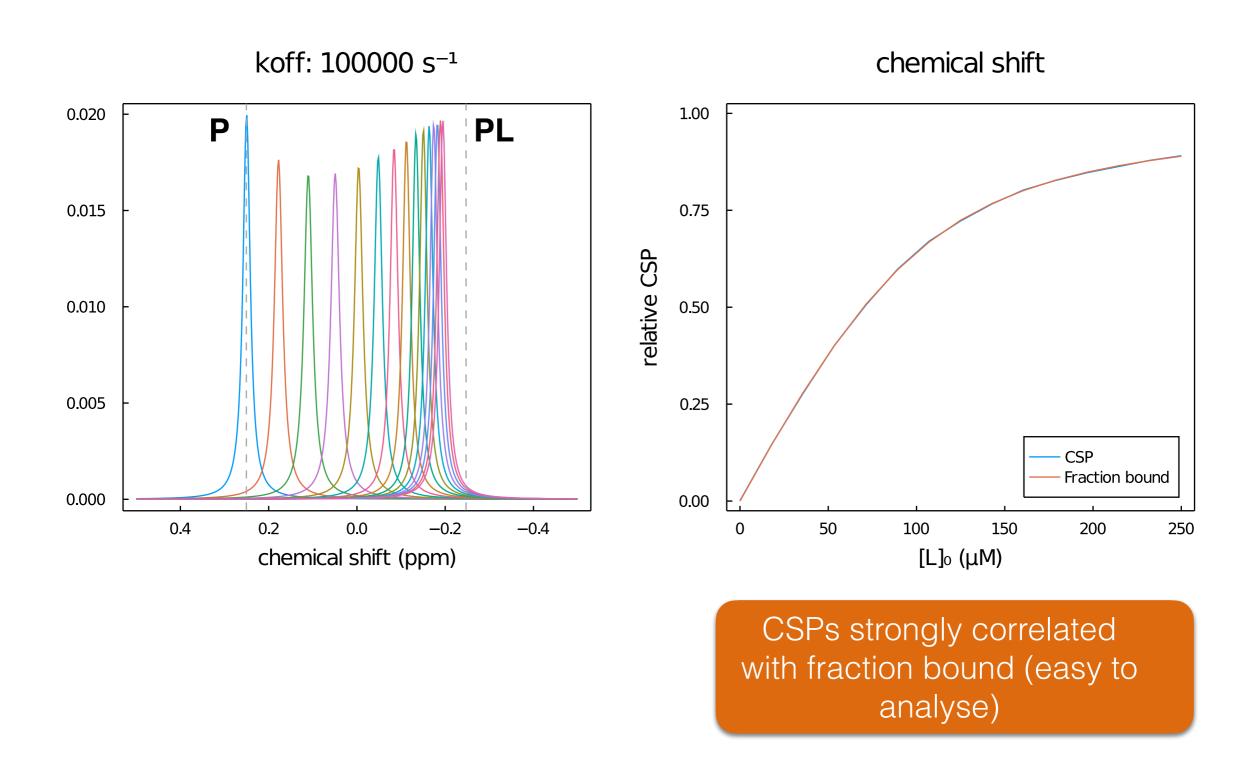


$$\Delta \delta$$
 (¹H) = 0.5 ppm (800 MHz)
 $\Delta \omega$ = 2500 s⁻¹
 $K_{\rm d}$ = 20 μ M

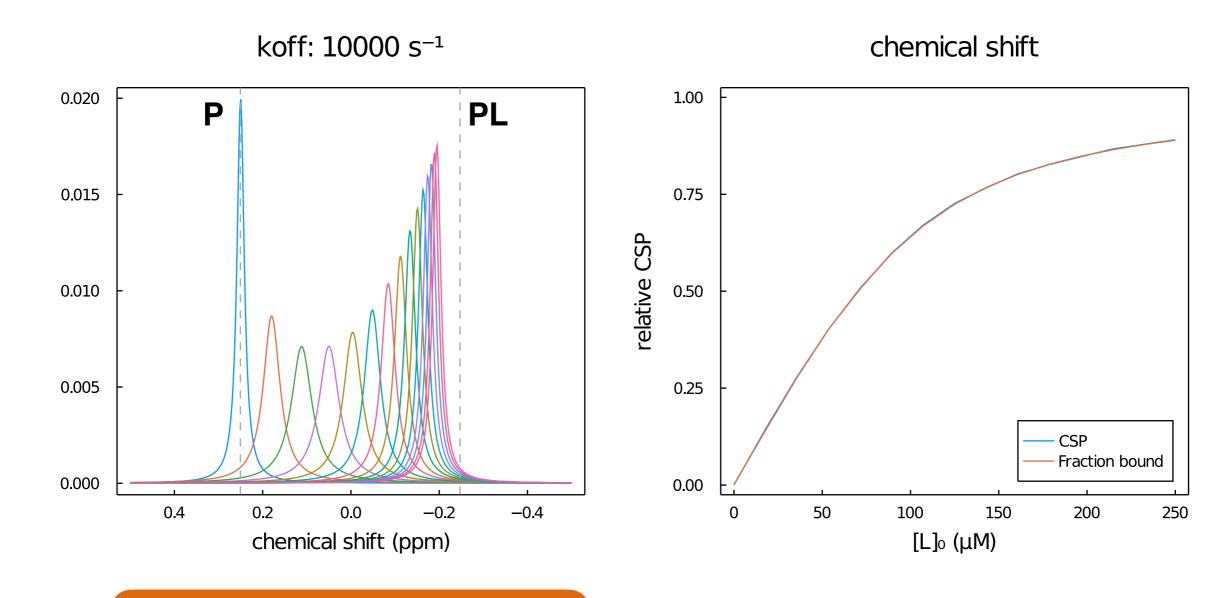
$$[P]_0 = 100 \mu M$$

 $[L]_0 = 0 - 250 \mu M$

Titration experiments: fast exchange

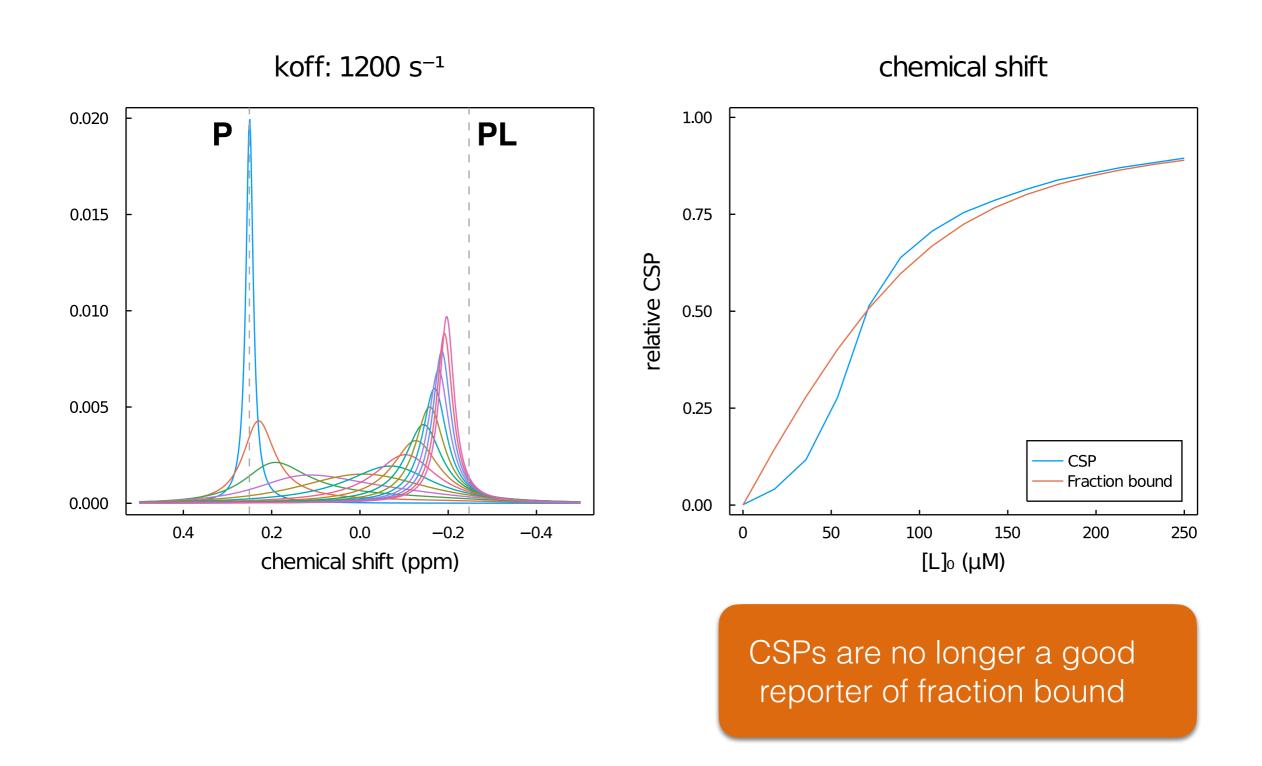


Titration experiments: fast exchange

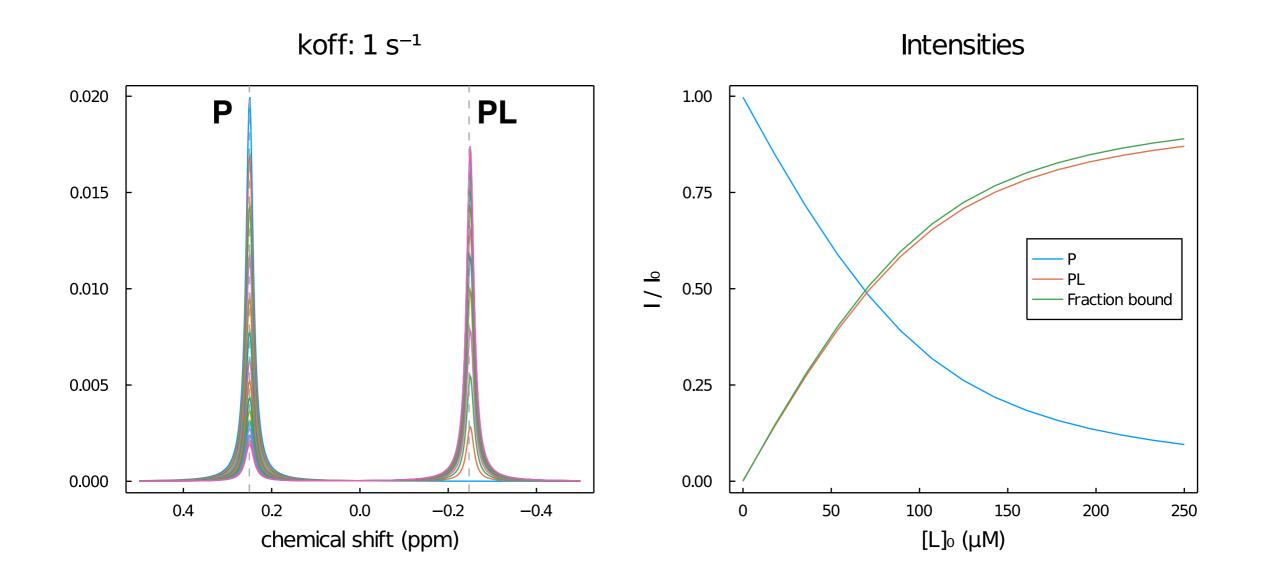


Exchange $R_{\rm ex} = \frac{p_A p_B}{k_{\rm ex}} \Delta \omega^2$

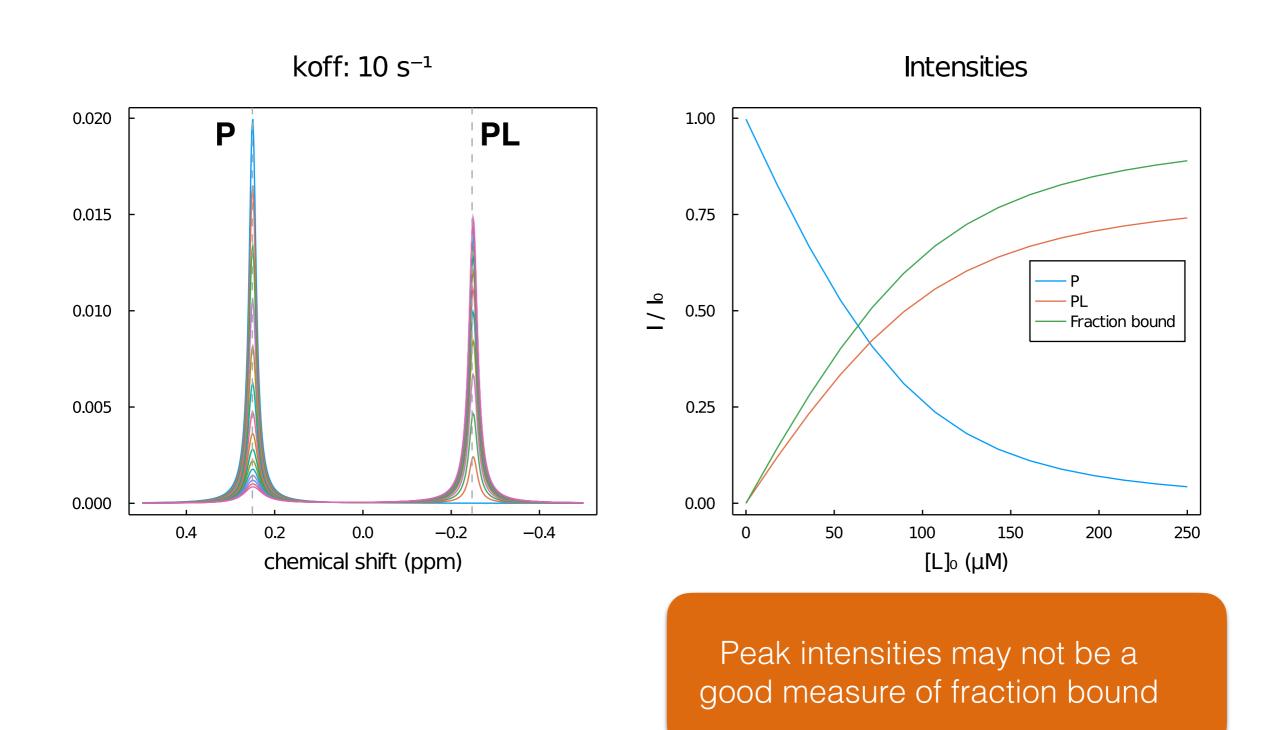
Titration experiments: intermediate exchange



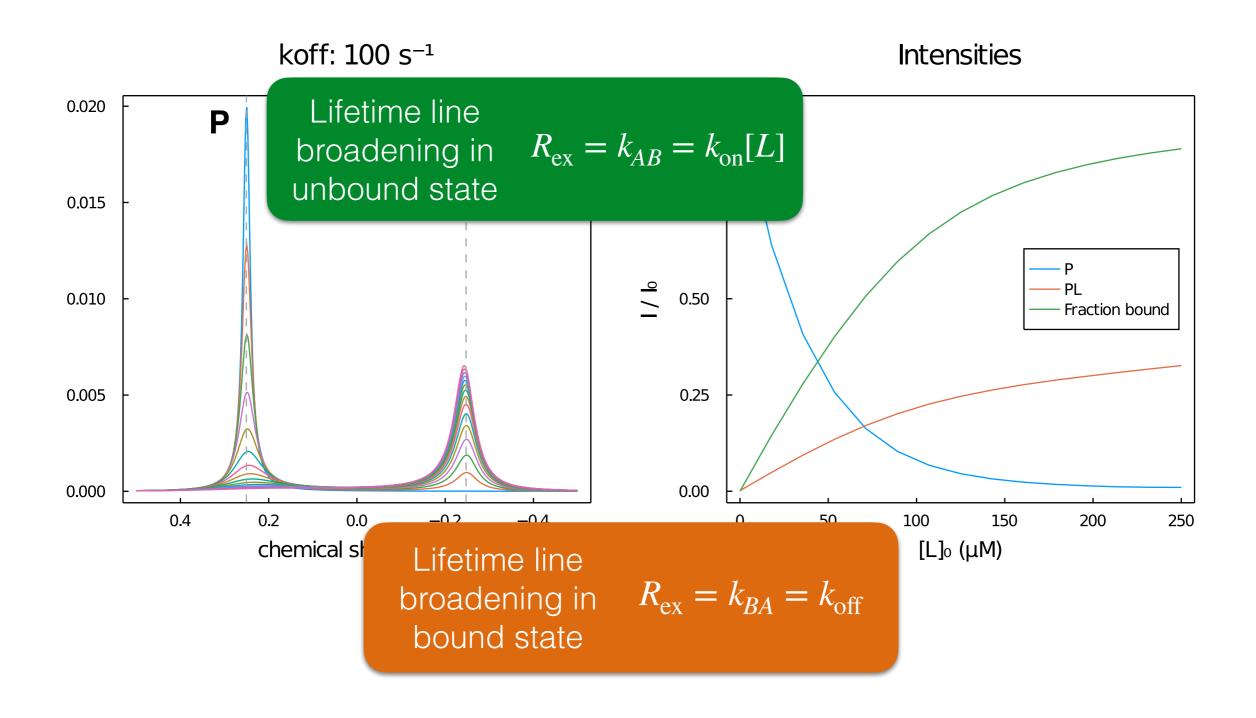
Titration experiments: slow exchange



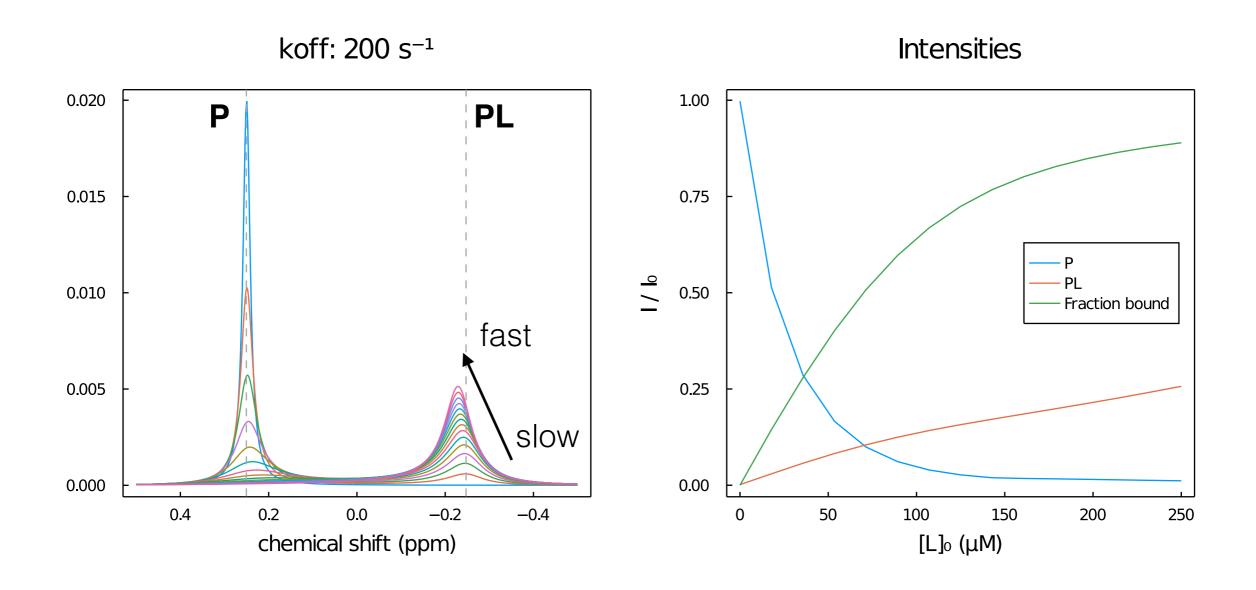
Titration experiments: slow exchange



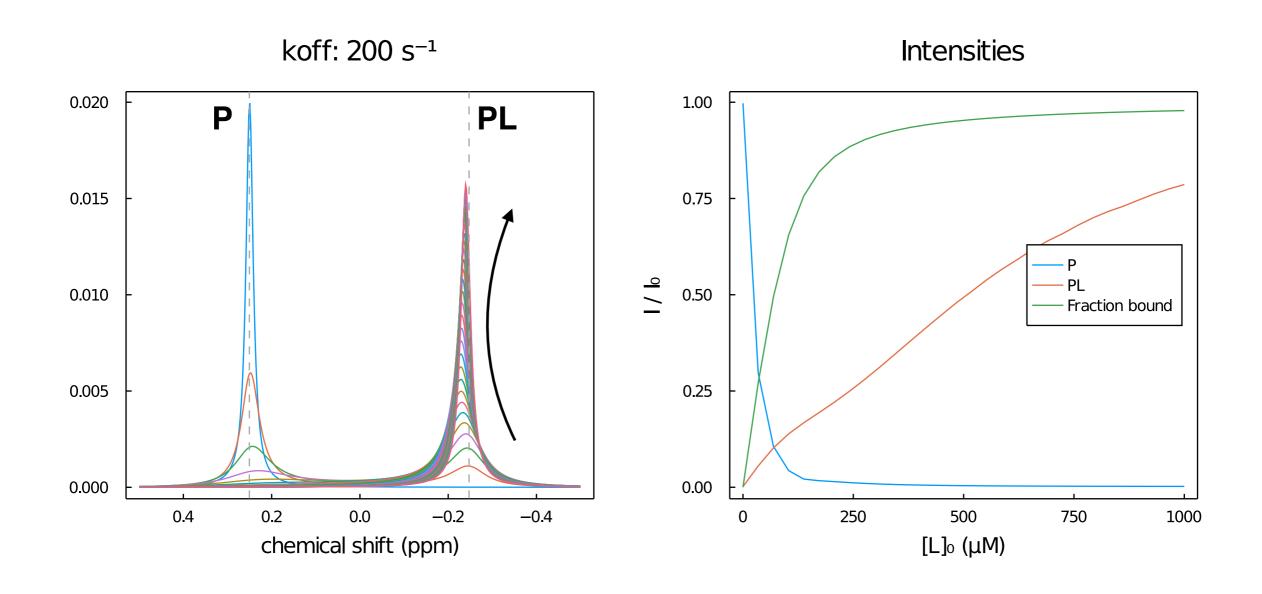
Titration experiments: slow exchange



Titration experiments: cross-over effects



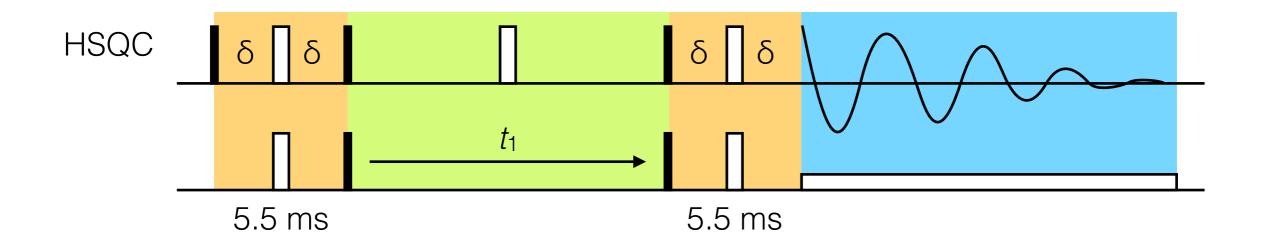
Titration experiments: cross-over effects



Chemical exchange in 2D experiments



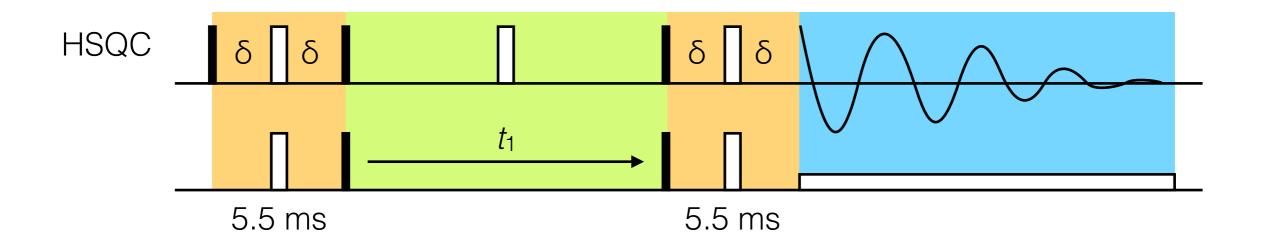
Chemical exchange in 2D experiments



Impact of chemical exchange on cross peak intensities is more significant than in 1D experiments – twice as many opportunities to lose signal!

$$I = I_0 \cdot \text{(relaxation loss during CTPs)} \cdot \frac{1}{R_{2,0}^{\text{indirect}} + R_{ex}^{\text{indirect}}} \cdot \frac{1}{R_{2,0}^{\text{direct}} + R_{ex}^{\text{direct}}}$$

Chemical exchange in 2D experiments

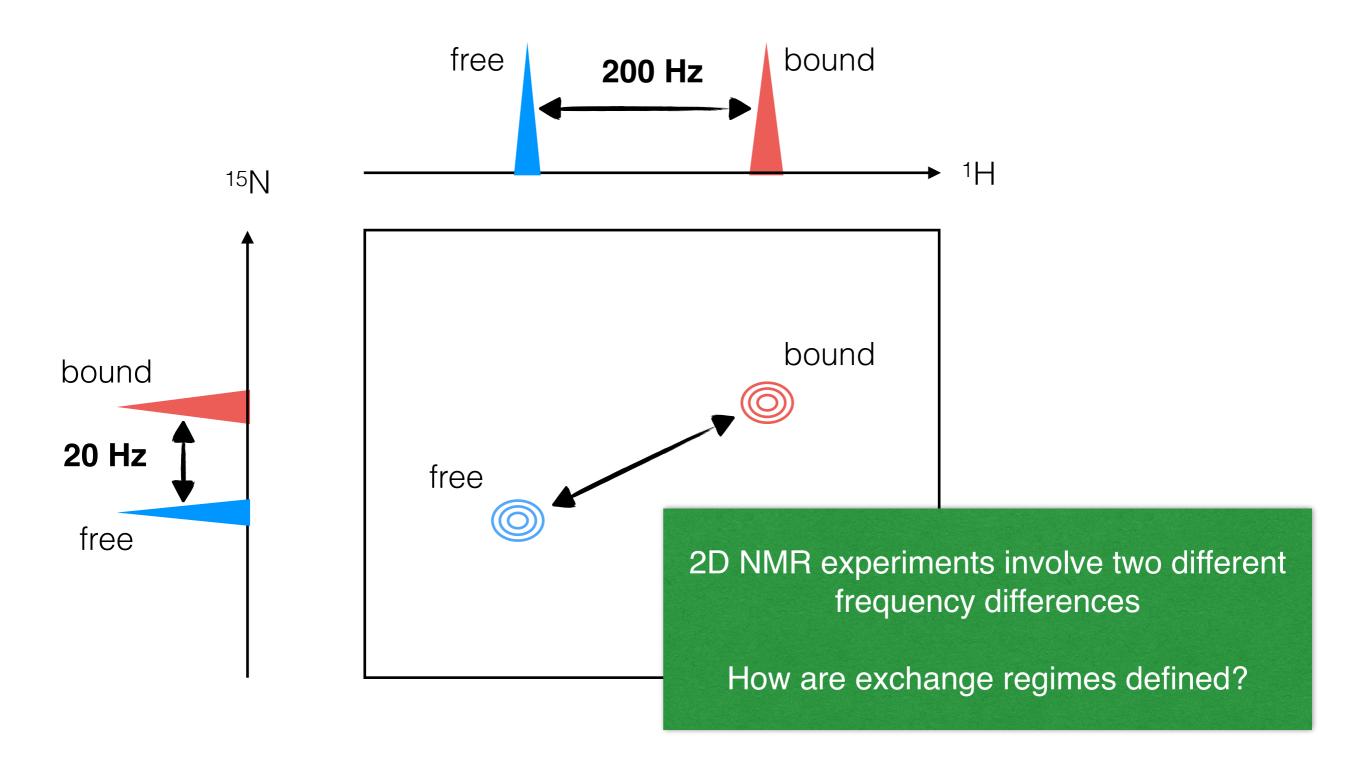


Impact of chemical exchange on cross peak intensities is more significant than in 1D experiments – twice as many opportunities to lose signal!

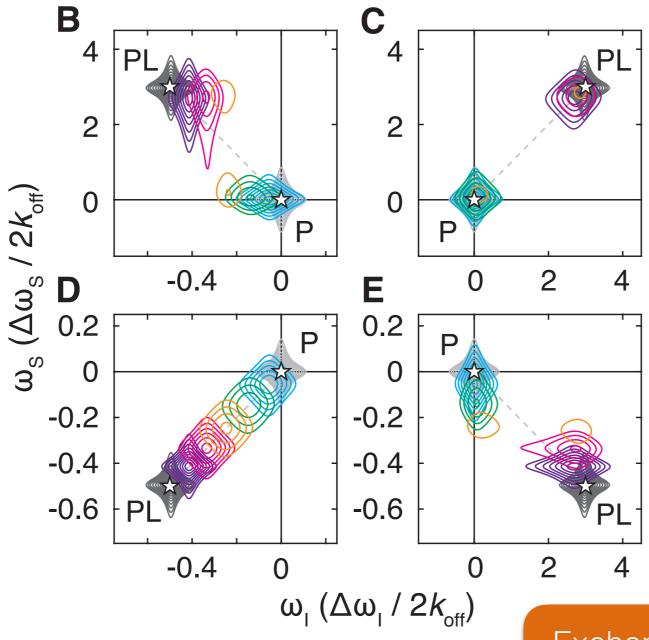
$$I = I_0 \cdot \text{(relaxation loss during CTPs)} \cdot \frac{1}{R_{2,0}^{\text{indirect}} + R_{ex}^{\text{indirect}}} \cdot \frac{1}{R_{2,0}^{\text{direct}} + R_{ex}^{\text{direct}}}$$

conversely – 2D experiments can be much more sensitive probes of exchange

Chemical exchange regimes in 2D experiments

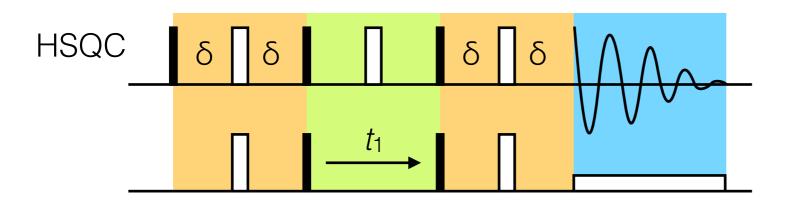


Chemical exchange regimes in HSQC experiments



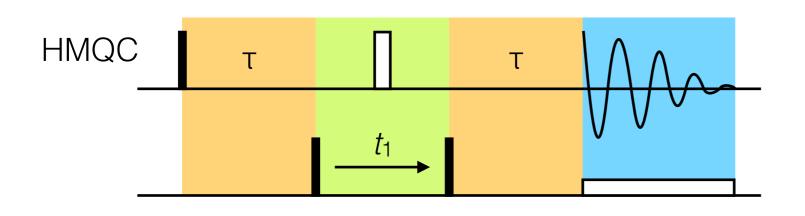
Exchange can be fast or slow with respect to both direct and indirect chemical shift differences

Different pulse programs have different exchange effects



Magnetisation is SQ during t_1

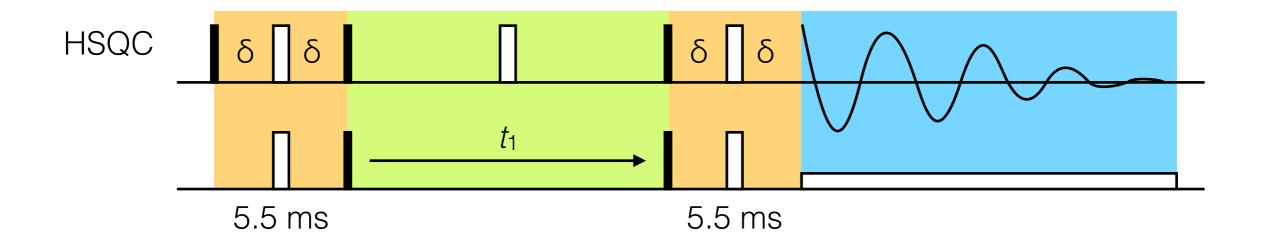
=> chemical exchange effects depend on $\Delta \omega^{SQ}$ vs k_{ex}



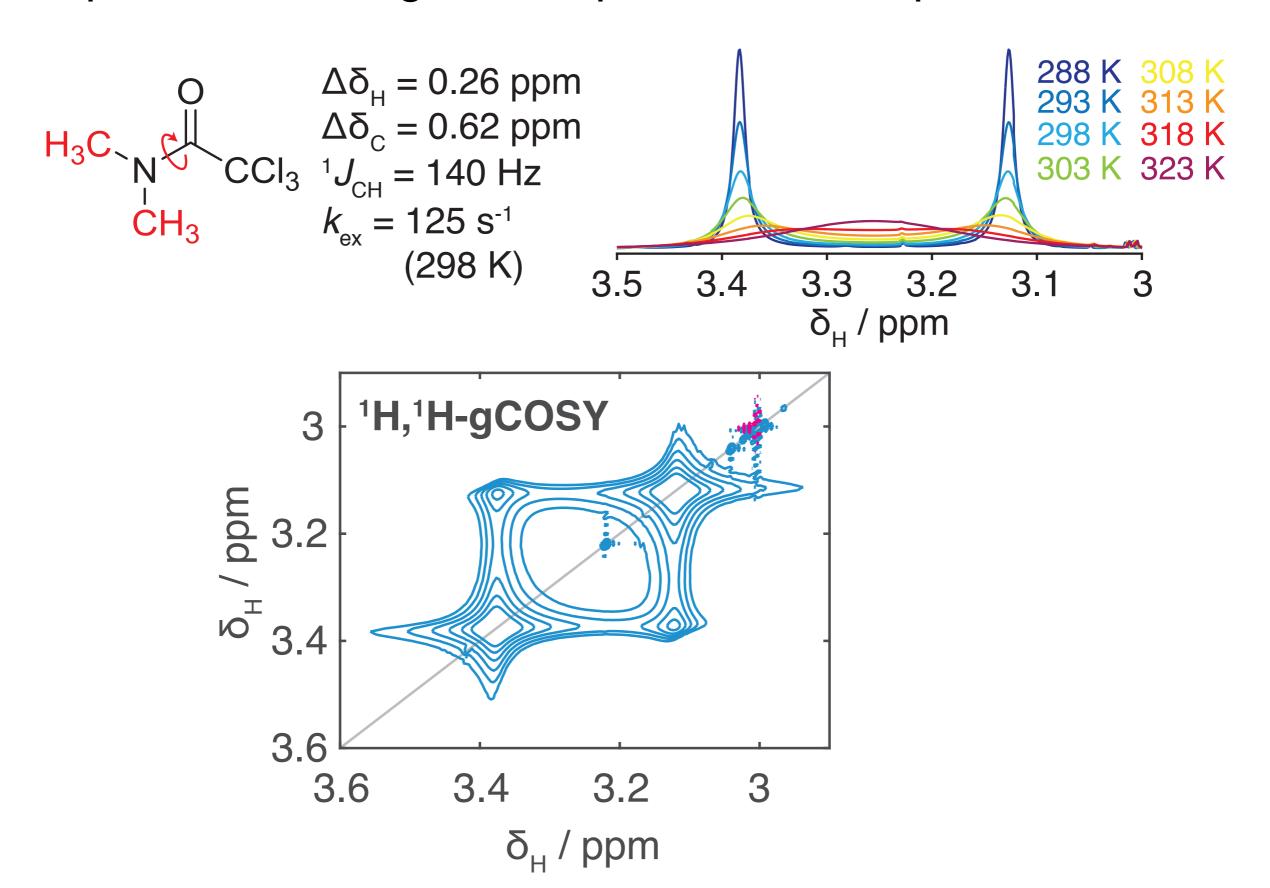
Magnetisation is a mixture of ZQ and DQ coherences during t_1

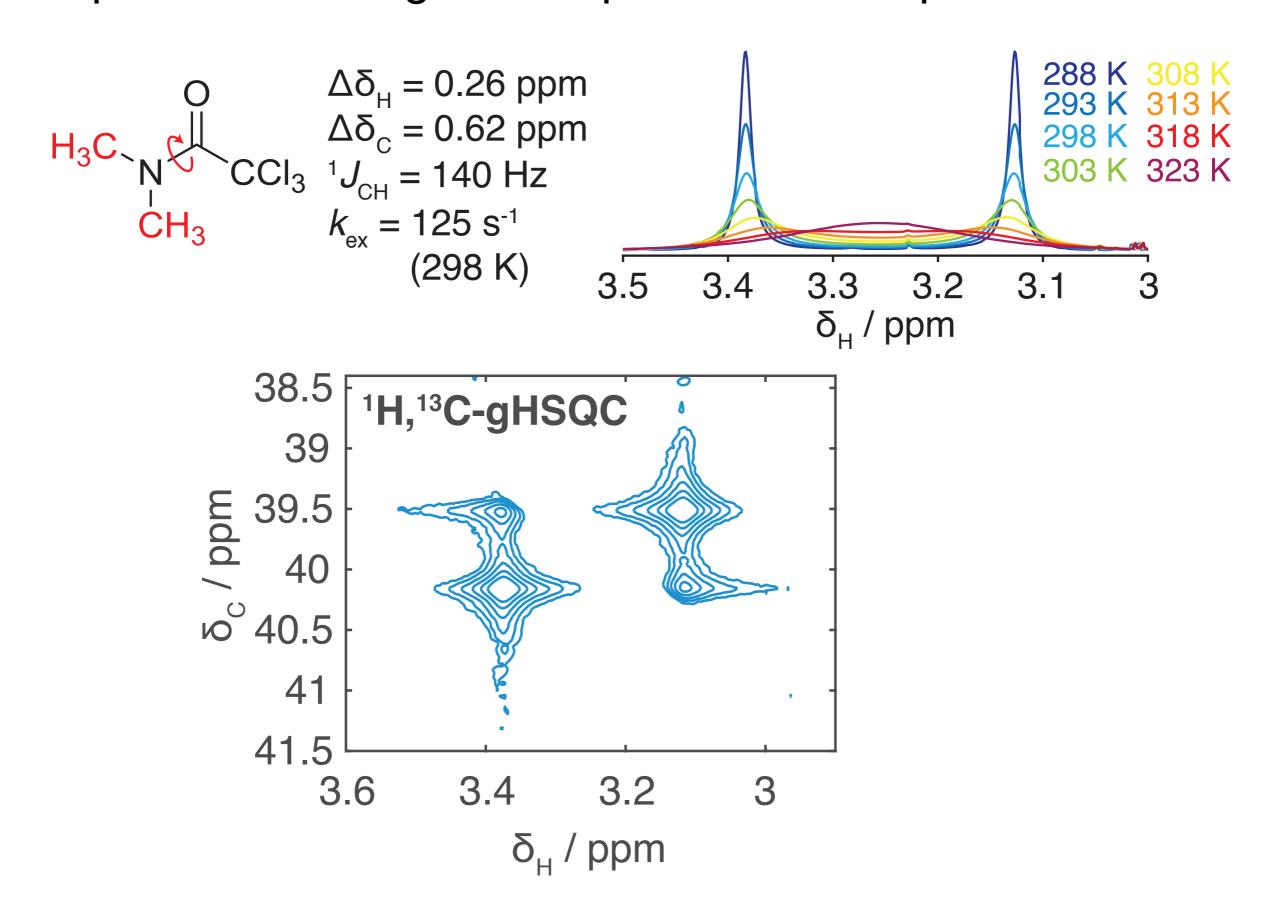
=> chemical exchange effects depend on both $\Delta \omega^{ZQ}$ and $\Delta \omega^{DQ}$ vs k_{ex}

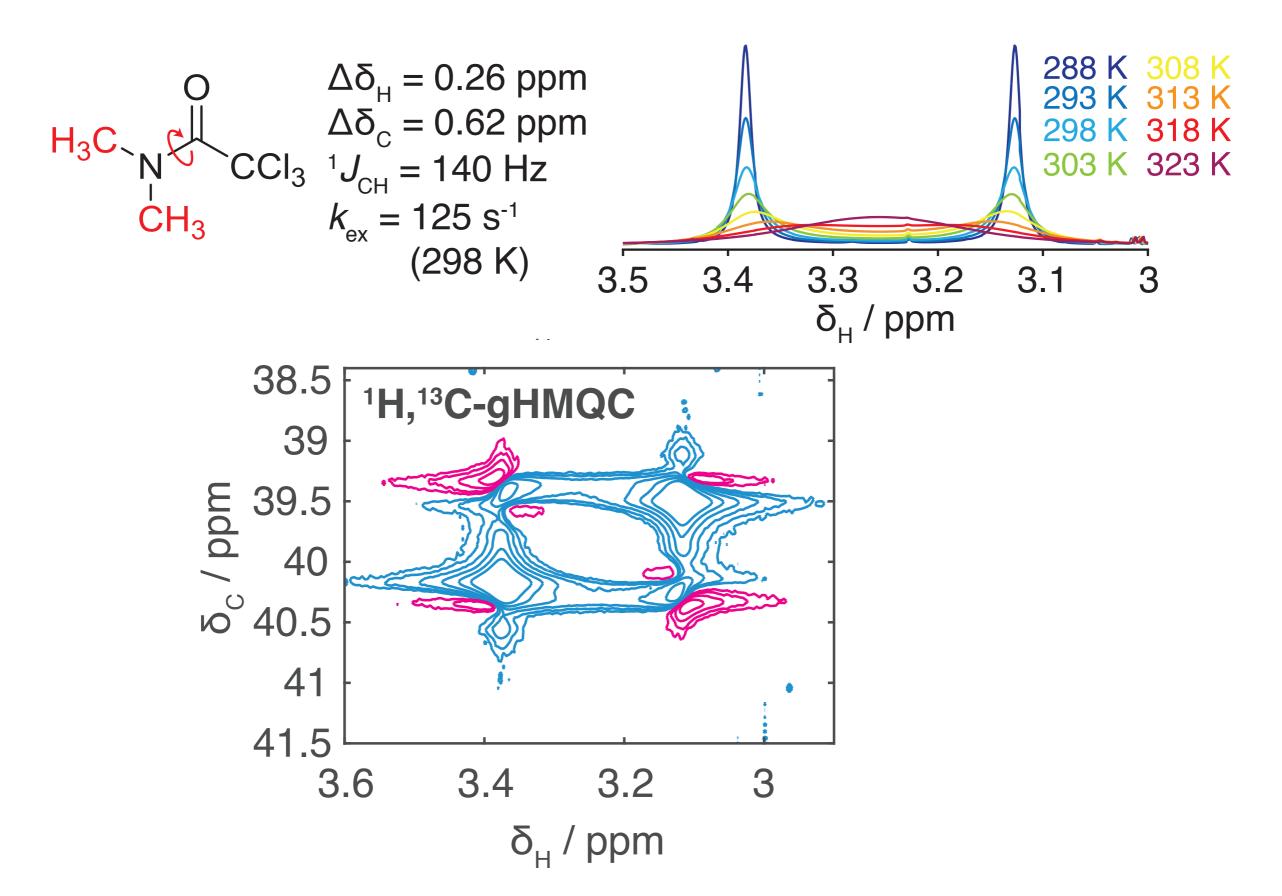
In general, HMQC is more sensitive to chemical exchange than HSQC

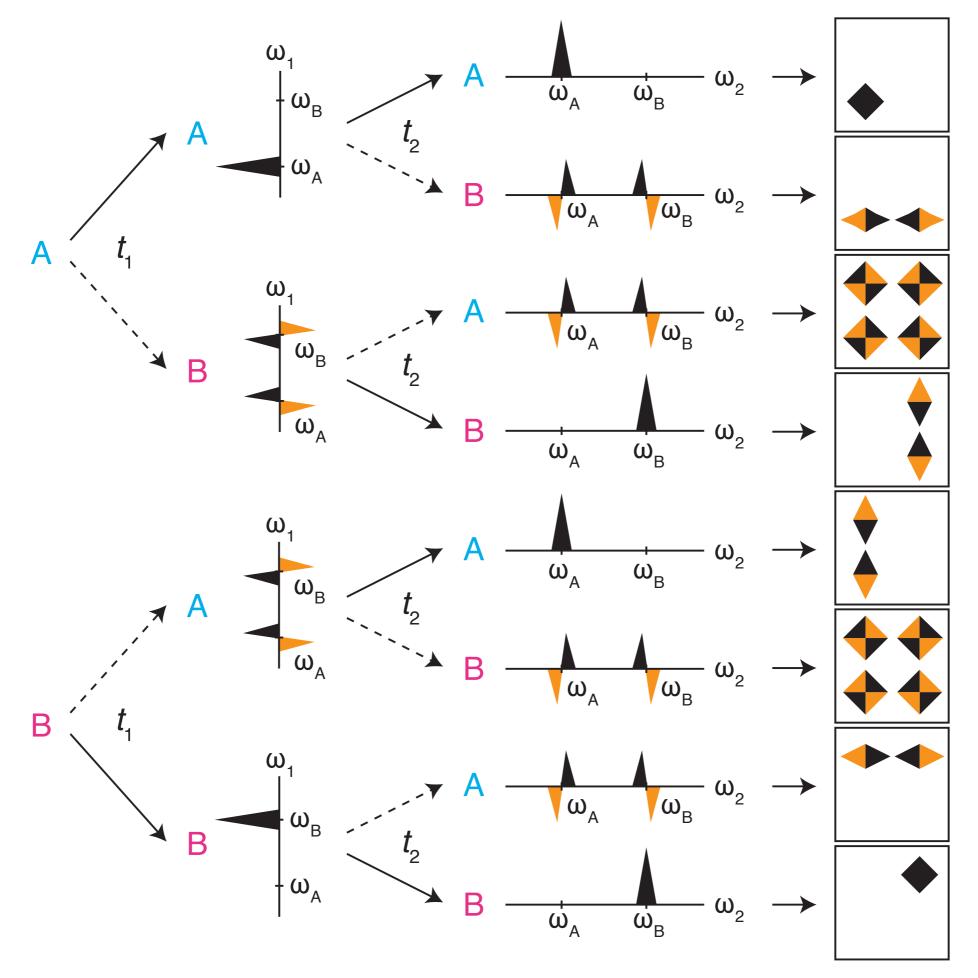


Chemical exchange during successive evolution periods or during coherence transfer periods can give rise to unexpected cross-peaks in 2D experiments







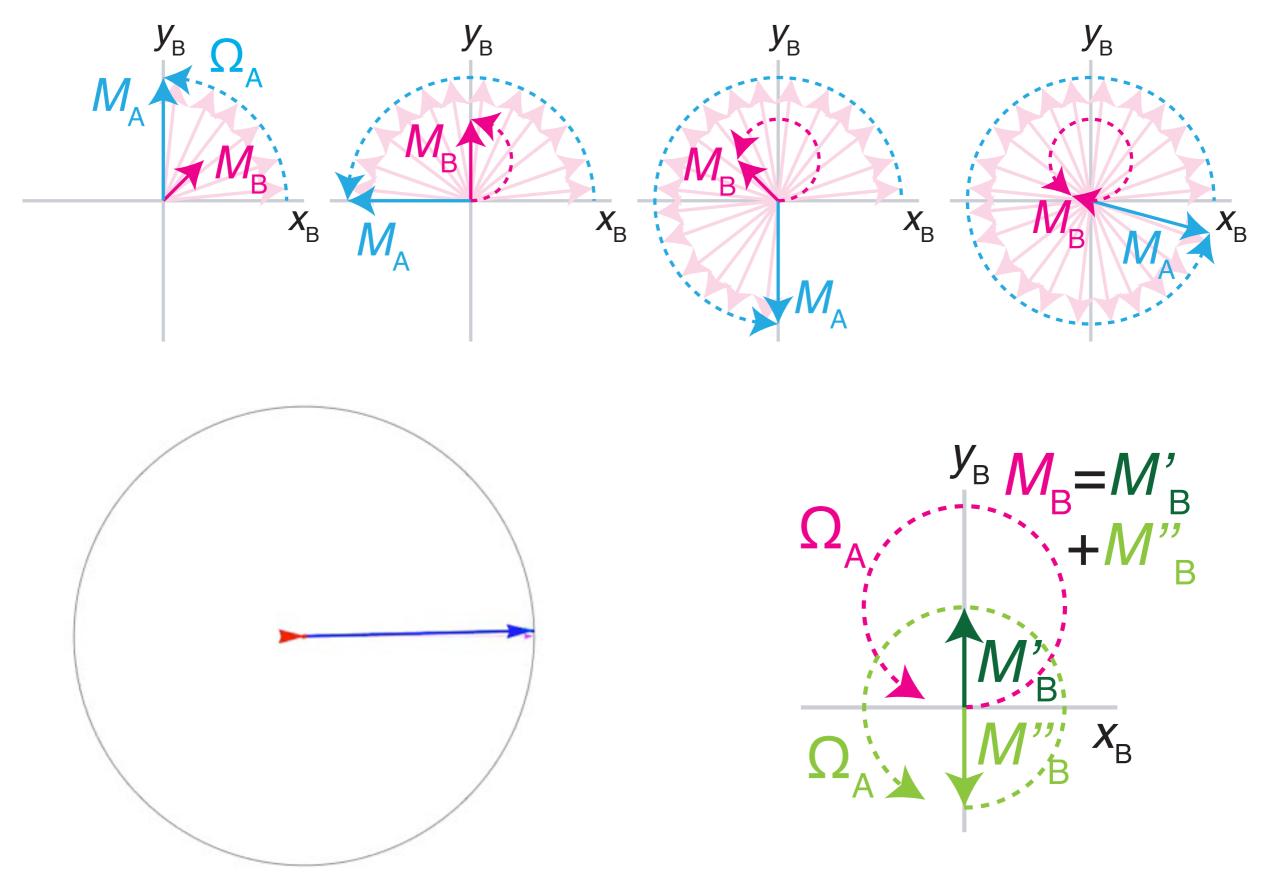


Origin of exchange-induced crosspeaks

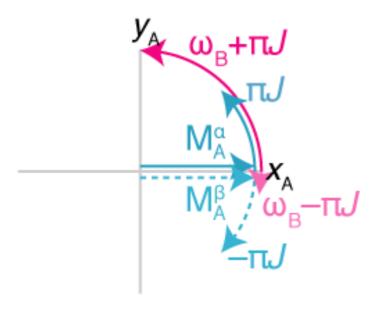


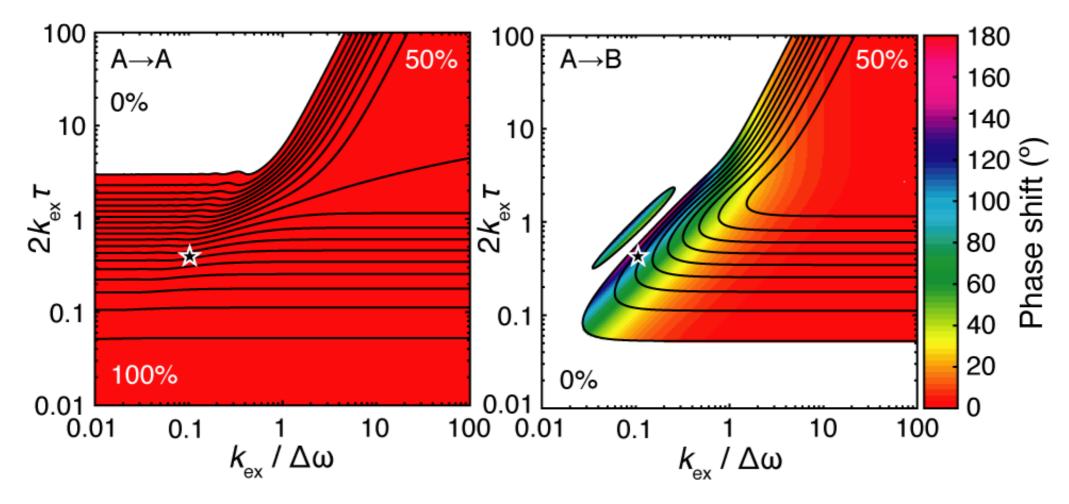
Diagram shown in rotating frame of spin B

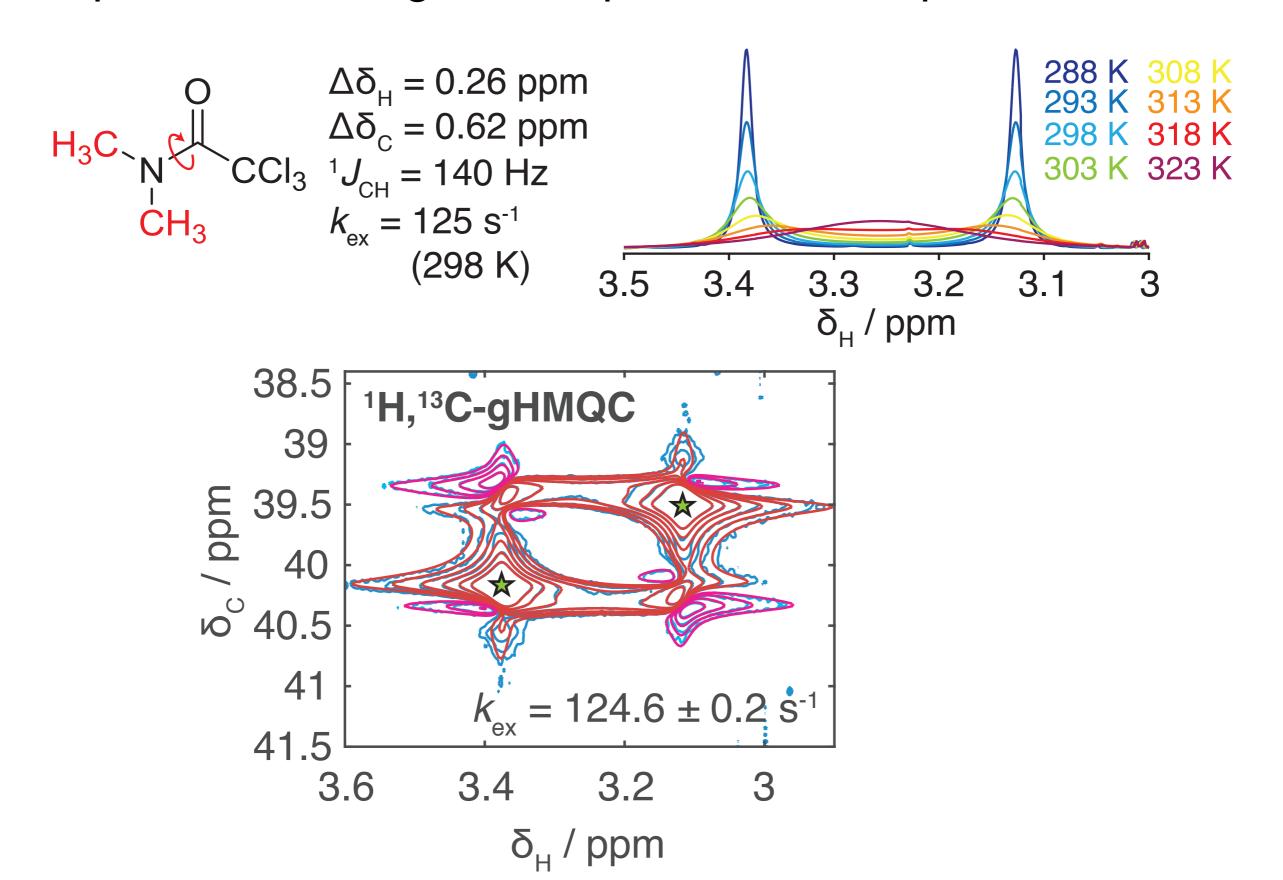
Origin of exchange-induced crosspeaks

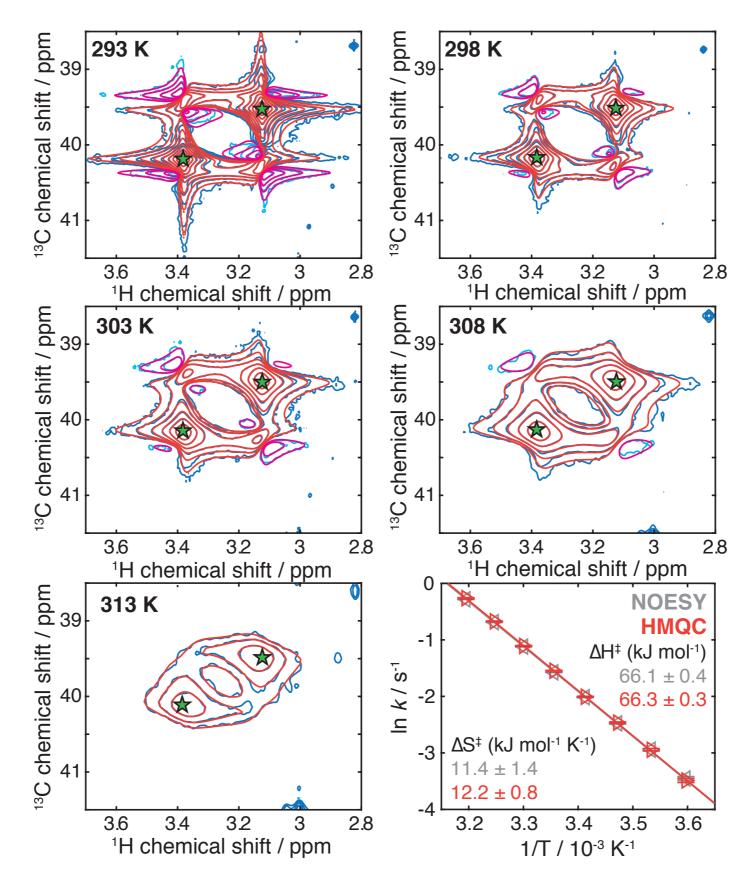


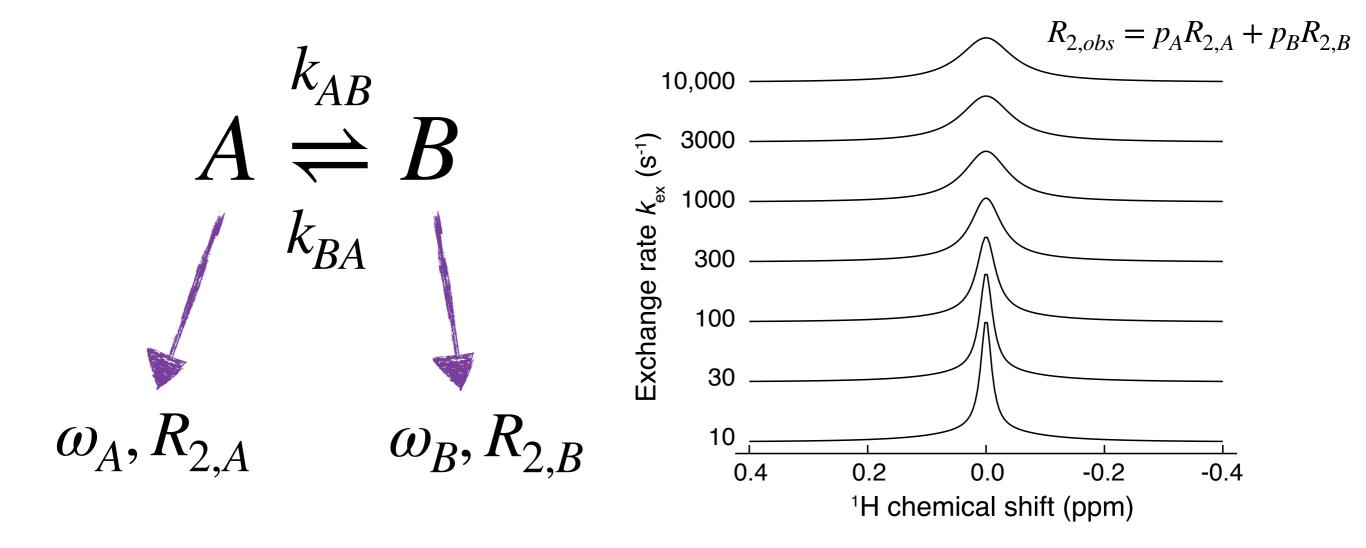
Exchange during INEPT coherence transfer periods







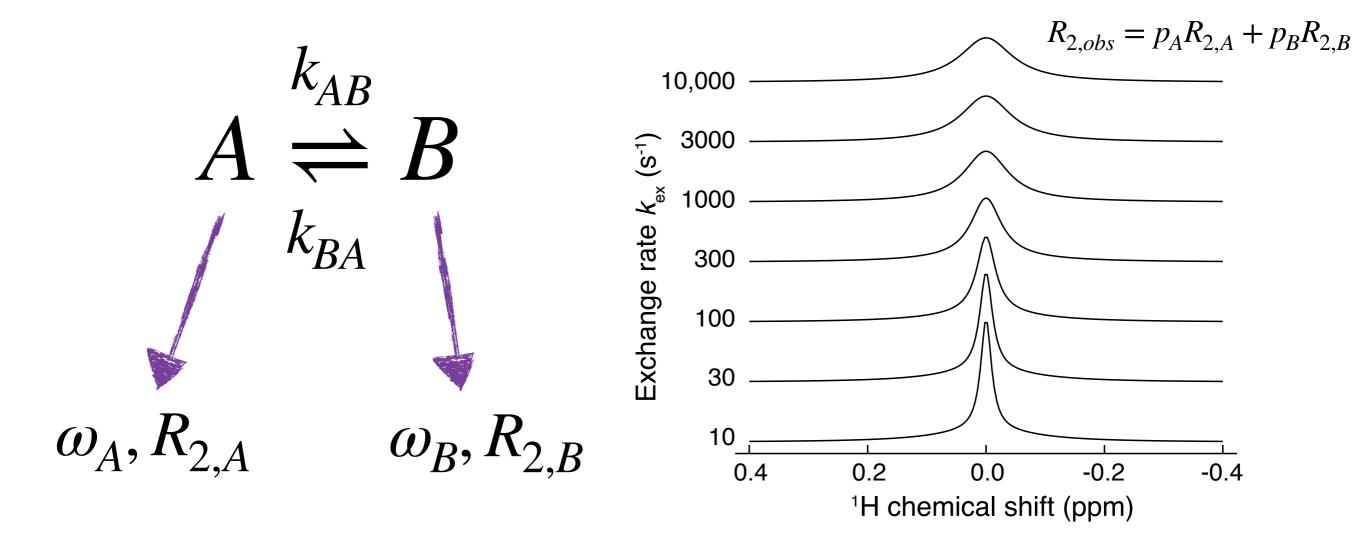




Chemical exchange effects can also arise between states that differ only in linewidth (R_2)

The observed spectrum will depend on the exchange rate relative to

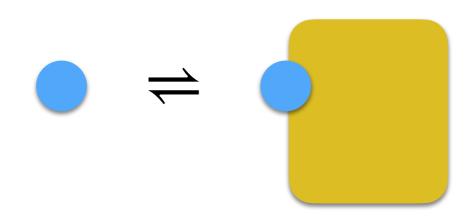
$$\Delta R_2 = \left| R_{2,A} - R_{2,B} \right|$$



More generally, if both the frequency and linewidth change, the relevant quantity is:

$$\left| i\Delta\omega + \Delta R_2 \right| = \sqrt{\Delta\omega^2 + \Delta R_2^2}$$

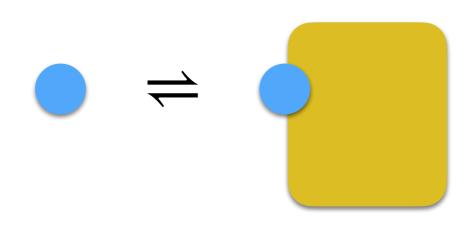
Transferred relaxation through ligand binding:



$$R_{2,obs} = p_A R_{2,A} + p_B R_{2,B}$$

If relaxation in the bound state is rapid, even a small bound population can have a large effect on the appearance of the free ligand

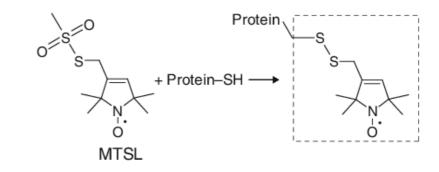
Transferred relaxation through ligand binding:

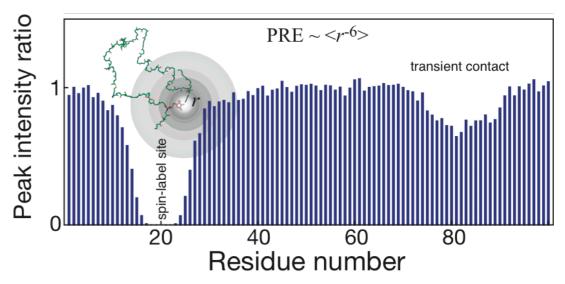


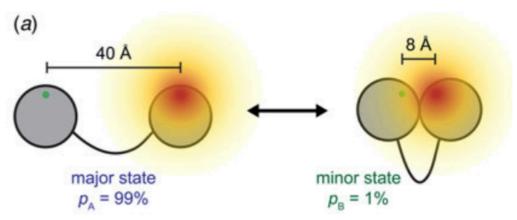
$$R_{2,obs} = p_A R_{2,A} + p_B R_{2,B}$$

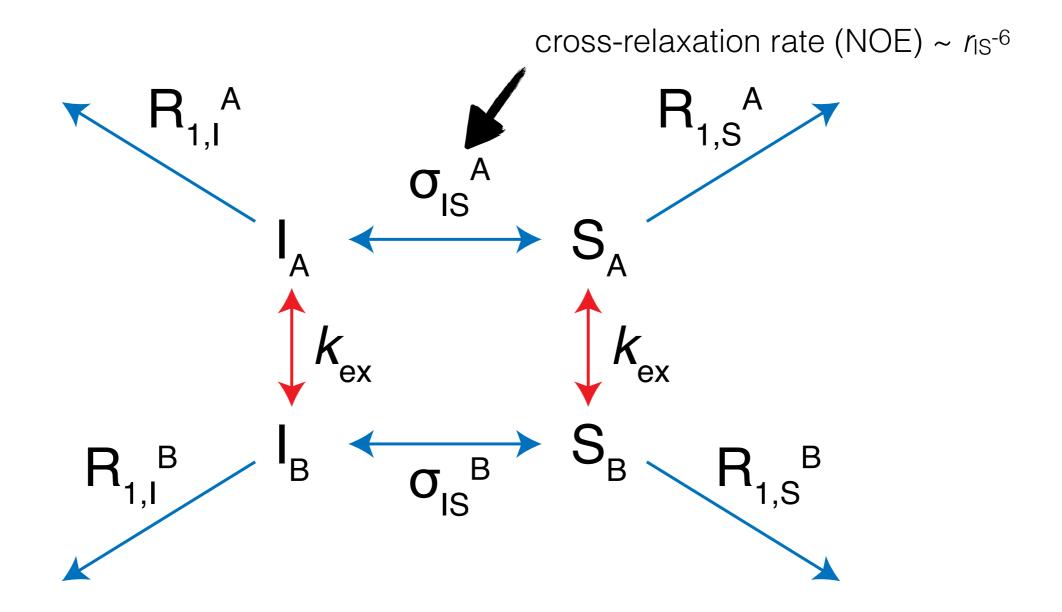
If relaxation in the bound state is rapid, even a small bound population can have a large effect on the appearance of the free ligand

Paramagnetic relaxation enhancements (PREs):







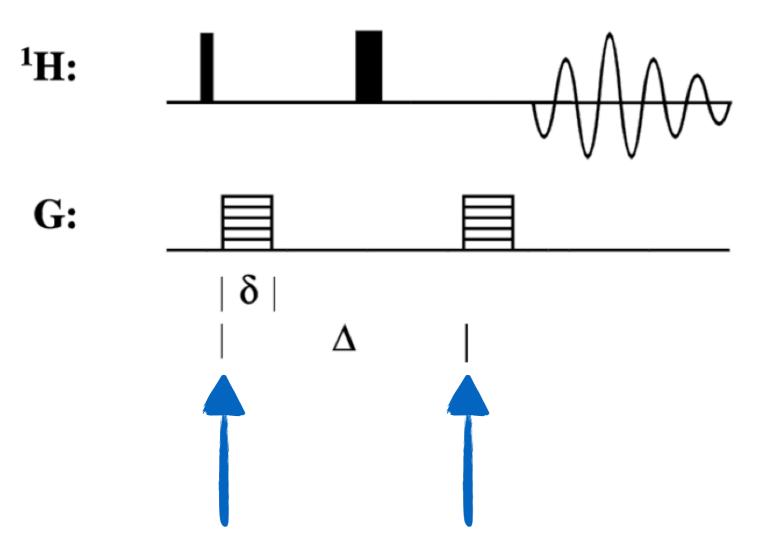


In fast exchange ($\Delta \sigma << k_{\rm ex}$), a population-weighted average cross-relaxation rate is observed:

$$\sigma_{obs} = p_A \sigma_A + p_B \sigma_B$$

Exchange beyond the chemical shift: diffusion

Pulsed gradient spin echo experiment

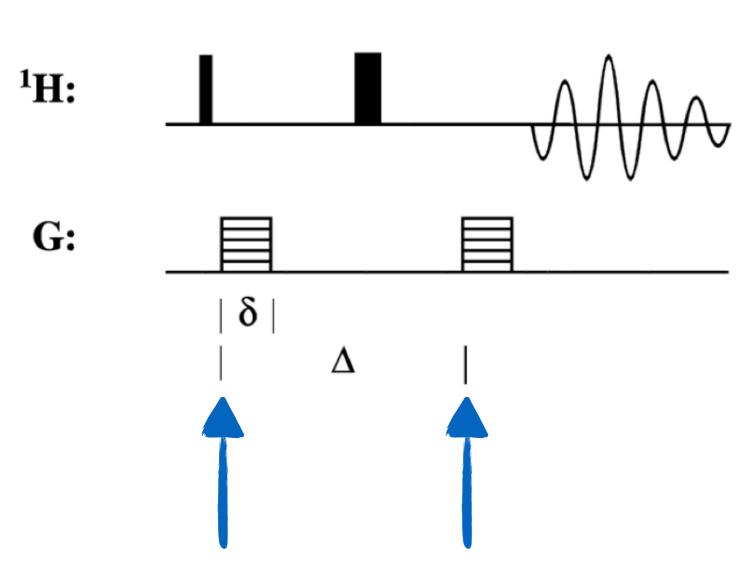


Pairs of gradient pulses encode and decode the position of spins along the z axis

Diffusion during the intervening period, Δ , leads to a loss of signal that can be analysed to measure the diffusion coefficient

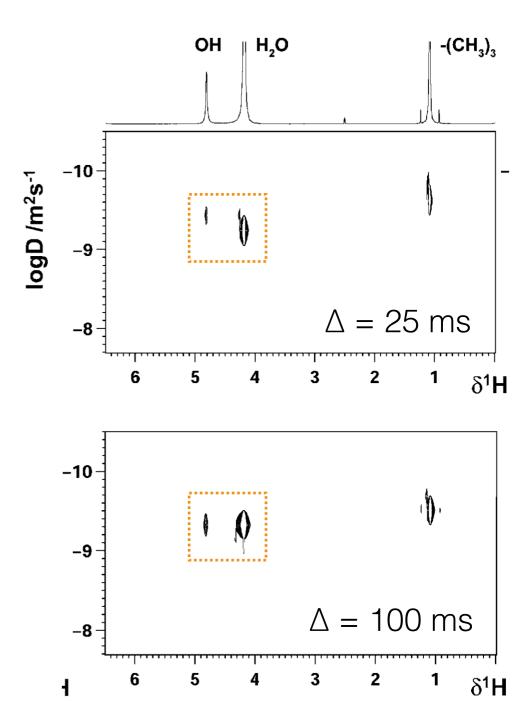
Exchange beyond the chemical shift: diffusion

Pulsed gradient spin echo experiment



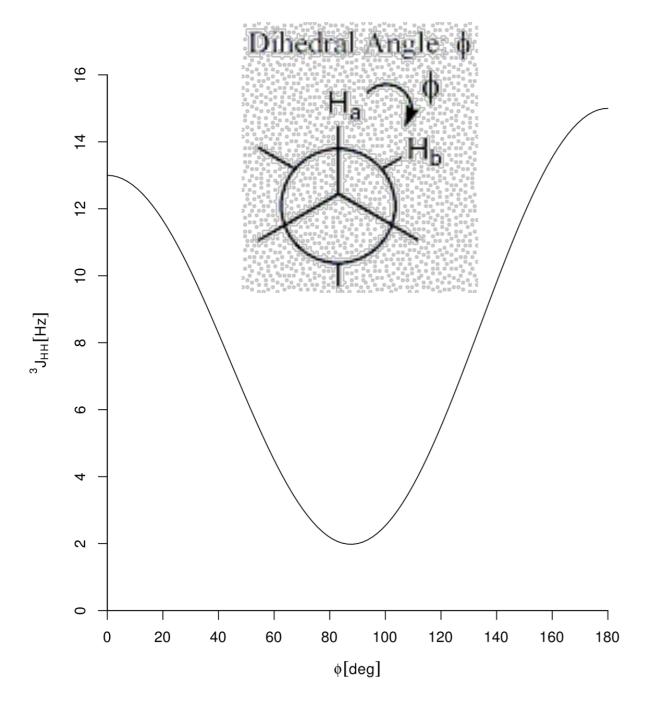
Pairs of gradient pulses encode and decode the position of spins along the z axis

Diffusion during the intervening period, Δ , leads to a loss of signal that can be analysed to measure the diffusion coefficient



Chemical exchange during Δ leads to averaging of the observed diffusion coefficient

Exchange beyond the chemical shift: scalar couplings



Karplus equation: $J = A \cos^2 \phi + B \cos \phi + C$

Intramolecular exchange e.g. sidechain rotamers

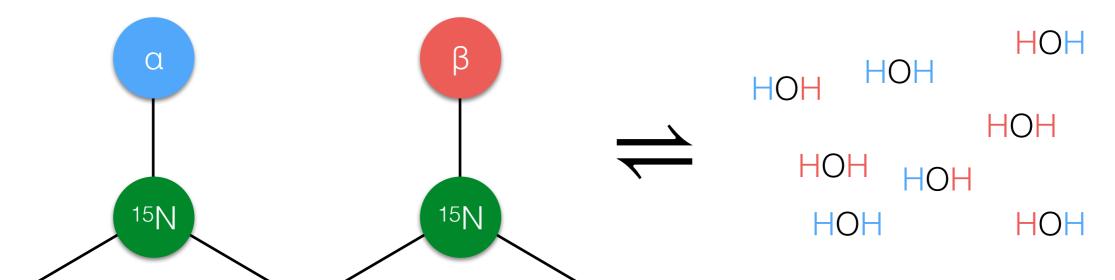
The dependence of the ³J_{HH} scalar coupling on dihedral angle is described by a Karplus equation

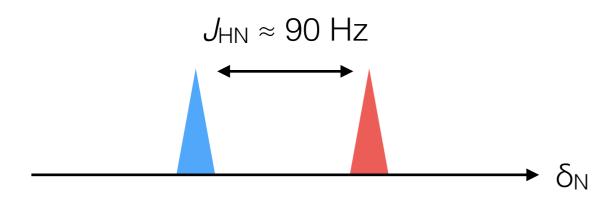
Different rotamers will be associated with different coupling constants, but provided exchange between rotamers is rapid:

$$\Delta J \ll k_{\rm ex}$$

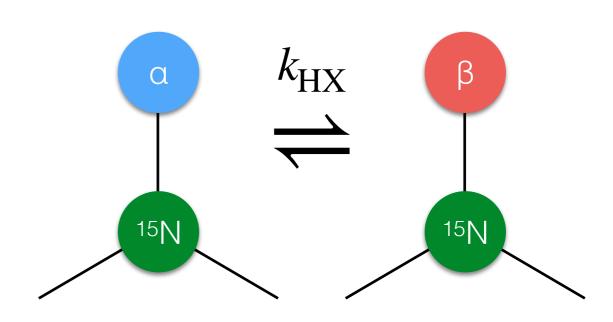
then a single coupling constant will be observed corresponding to the population-weighted average

Scalar couplings and intermolecular exchange

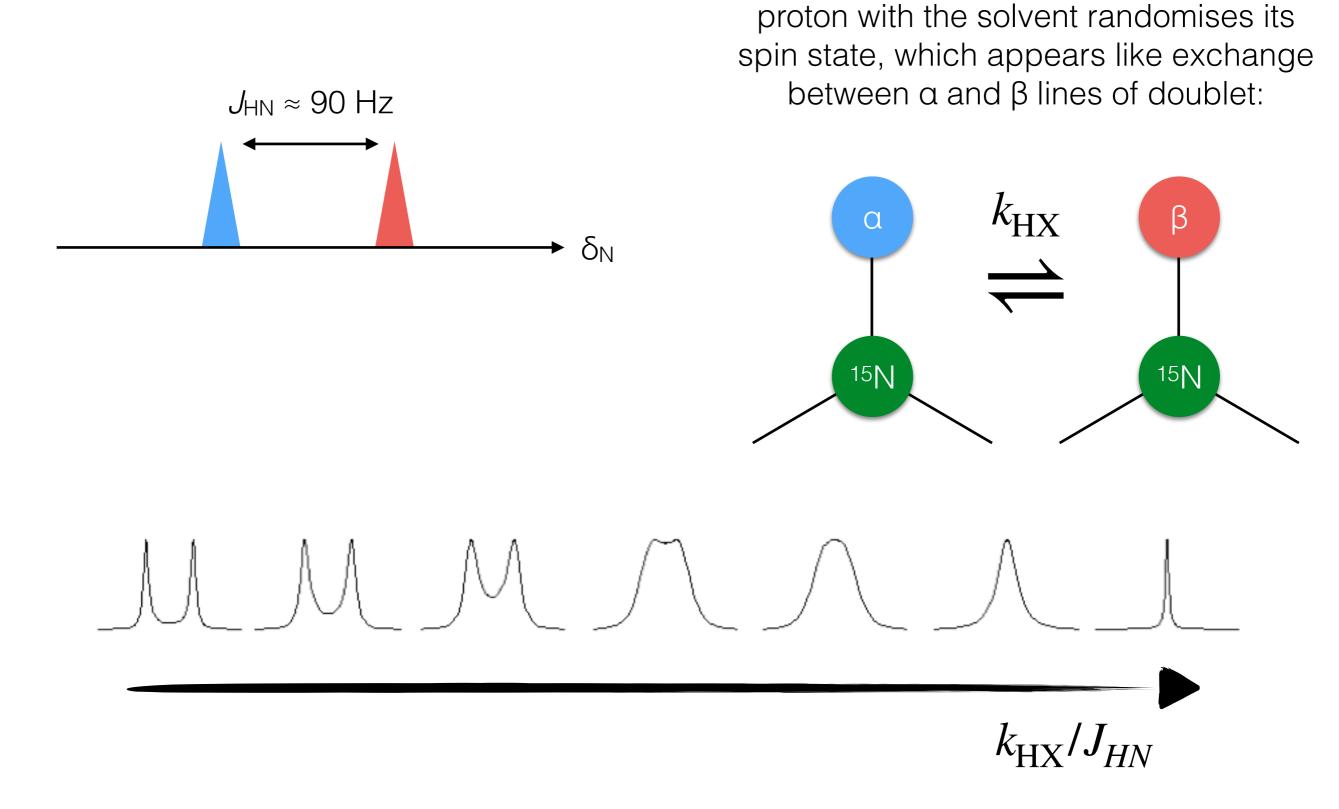




Chemical exchange of the coupled proton with the solvent randomises its spin state, which appears like exchange between α and β lines of doublet:



Scalar couplings and intermolecular exchange



Chemical exchange of the coupled

