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CW NMR

« Constant frequency, vary magnetic field to detect resonances
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The Nuclear Induction Experiment

F. Brocu, W. W. HanseN, AxD M. PAcxAzD
Stanford Unsversiy, Caltfornia
(Received July 19, 1946)

The Nobel Prize in Physics
1952
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The Nobed Prize in Physics 1952 was awarded jomtly 10 Falix Bloch
and Edward Mifs PucCell For their development of new methods fos
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Fi16. 8. Photographic record of the proton signal from
water. The three traces from top to bottom correspond to
the situation a, b, ¢ of Fig. 7.



Chemical Effects on Nuclear Induction Signals from
Organic Compounds*

J. T. Arnorp, S. S. DHARMATTI, AND M. E. PACKARD
Department of Physscs, Stanford Unsversity, Stanford, California
(Received February §, 1951)

FiG. 1. Oscillograph trace of the nuclear induction signal from ethyl
alcohol. The total trace is 75 milligauss wide and was traversed in 2 seconds.
The peaks from left to right represent OH, CHs:, CHa.

Principle of FT NMR

» How do you find out the frequencies
of a bell?

* CW approach - scan wide range of
frequencies looking for resonances

» FT approach - hit it with a hammer
and listen!

* Analysis of frequencies present =
‘Fourier transform’

+ Relaxation — energy has been put
into molecules to set them vibrating,
where does it go?

TUE REVIEW OF SCIENTIFIC INSTRUMENTS YOLUME 37, NUMBER 1 JANUARY 1966

Application of Fourier Transform Spectroscopy to Magnetic Resonance

R. R. Eszist aAx0 W, A. AxDERSON
Analytical Instrument Divivien, Varian Associates, Palo Alto, Colifornis 94303
(Received 9 July 1965, and in final lorm, 16 September 1068)
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The Nobel Prize In Chemnistry 1991 was awarded to Richard f Ernst
i Yor tus contributions to the development of the methodology of high
i resolution niklear magnet resonance (NMR) spectroscopy ™

The vector model

e sum up MIcroscopic spins into a macroscopic magnetic moment /
magnetisation vector

* can treat the evolution of this vector using classical physics

» the only bit of classical physics you need — precession of
magnetic moments around a field
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Pulse-acquire: the simplest NMR experiment Pulse—acquire: vector model description
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The Bloch sphere

Z
pulse / acquire
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T+ (longitudinal) relaxation

FUIEE

T relaxation = return to rest position
(energy lost to surroundings)

T2 (transverse) relaxation
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T2 (transverse) relaxation T> (transverse) relaxation
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Relaxation rates and molecular size
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Increasing viscosity and molecular size

ns and sensitivity

ns

signal ~ ns

SNR ~ ns!/2

noise ~ ns'/?
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Parameters in the pulse—acquire experiment
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decoupling
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pulse length / flip angle
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» pulse power vs pulse length
e calibration

» optimum flip angle?

decoupling — power limits

N HAAV
\/ \VJ

decoupling
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» If decoupling: aq MUST be less than 100 ms

* Risk of probe damage!

Recycle delay
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* Must wait for signal to relax (71 relaxation)
* Hardware considerations: duty cycle limits

* Optimum combination of p1 and d1?



Ernst angle excitation
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optimum d| for fixed 90° pulse:

Small flip angle, small recycle delay
Large flip angle, large recycle delay
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Practical aspects: receiver gain
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Solvent suppression

* Proton concentration in H20 is
110 M!

* Two basic approaches:
* presaturation

+ frequency selective
methods
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Solvent suppression: presaturation

Low power, very long selective
pulse

Need to calibrate frequency
precisely (o1)

Simple
Saturation of labile protons

Transferred saturation from Ha in
big molecules

No delay between pulse and
acquisition:

¢ Quantitative

* No J-coupling evolution
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1D 'H spectra of TEP-1, pH 6,290 K.

NMRA Spectroscopy Explaned Smplfied Thecry. Appiications
Adams, R W Horoyd C

s and Examples for Organc Chemsstry and Structurel Biology. Witey (2007)
Nisson, M & Moris, G A Chem Commun (Camo ) 49 368-360 (2013)

Avoid disturbing water / return it to

+z equilibrium before starting

Doesn't wipe out labile protons

No transferred saturation

Better quality water suppression
(particularly if shimming is poor)

Delay between pulse and acquisition

+ Signal lost (relaxation)

+ Signal lost (diffusion)

* Homonuclear J-coupling evolution

(lineshape distortion)

Processing

Solvent suppression: watergate, excitation sculpting



