Think before you start!

- Molecular weight
 - Folded / unfolded?
- Isotope labelling scheme
- Sample preparation
 - H₂O / D₂O
 - buffer
 - pH
 - ionic strength
- Stability (azide, protease inhibitors)

- Temperature
- Concentration
 - sensitivity
 - solubility
 - dimerisation?

Labelling schemes

Basic protein

characterisation

Chris Waudby

c.waudby@ucl.ac.uk

1D¹H spectra

1D ¹H spectra: stability over time

2D ¹H,¹⁵N spectra: typical chemical shifts

Cabrita et al. Methods Mol. Biol. 752, 97-120 (2011).

2D ¹H,¹⁵N spectra: typical chemical shifts

calculated from http://www.bmrb.wisc.edu

2D ¹H,¹⁵N spectra: molecular weight

2D ¹H,¹⁵N spectra: peak counts

2D ¹H,¹⁵N spectra: IDPs, temperature and pH

2D ¹H,¹³C spectra: methyl chemical shifts

2D ¹H, ¹³C spectra: chemical shift dispersion

2D spectra: assessing sensitivity

Contour plots can be deceptive!

Charles Hutton (1778)

The first contour plot: the Schiehallion experiment (1774)

Map Of A Nation: A Biography Of The Ordnance Survey By Rachel Hewitt

Rotational diffusion

Rotational correlation time = average time to rotate by one radian (57°)

$$\tau_c = \frac{4\pi\eta r_h^3}{3k_BT}$$

$$\tau_c = \frac{4\pi\eta r_h^3}{3k_BT} = \frac{\eta V}{k_BT}$$

Estimating rotational correlation times from ¹⁵N T_1 and T_2

Rotational correlation times from ¹⁵N T_1 and T_2 – assumptions!

All peaks contribute equally

$$\tau_c = \frac{1}{4\pi\nu_N} \sqrt{6\frac{T_1}{T_2} - 7}$$

- Spherical molecule (isotropic tumbling)
- Rigid (S^2 order parameters = 1)
- Correlation time WILL ALWAYS BE UNDERESTIMATED!

TRACT: correlation times for big proteins

Effective rotational correlation times of proteins from NMR relaxation interference

Donghan Lee¹, Christian Hilty², Gerhard Wider^{*}, Kurt Wüthrich

Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland

Received 19 May 2005; revised 21 August 2005 Available online 26 September 2005

J. Magn. Reson. 178, 72–76 (2006)

 $R_{\beta} - R_{\alpha} = 2\eta_{xy} = 2p\delta_{\mathrm{N}}(4J(0) + 3J(\omega_{\mathrm{N}}))(3\cos^2\theta - 1)$

 $J(\omega)=0.4 au_c/[1+(au_c\omega)^2]$

TRACT analysis in Excel

A	В	L	D	E	P P	6
TRACT an	nalysis					
Observed rate	25			Constants		
R_alpha	27	s-1		mu0	1.2566E-06	
R_beta	47	s-1		gammaH	2.68E+08	s-1 T-1
				gammaN	-2.71E+07	
Spectrometer				h	6.63E-34	Js
Field	700	MHz		rHN	1.02E-10	m
				ΔðΝ	1.60E-04	
Calculations				θ	17.00	degrees
ΔR	20	s-1				
η _{xy} 10		s-1		Derived parameters		
				BO	16.44	т
Result				p	-2.55E+04	
tau_c	8.35	ns		ðN	-16813.707	
				p∂N(3cos ² θ-1)	7.47E+08	
				ω _N	2.80E+09	rad s-1

Translational diffusion

- Global property all residues in a protein have the same diffusion coefficient
- Stokes–Einstein relation to hydrodynamic radius:

Pulsed-field gradients in NMR

Disruption of field homogeneity

Magnetic field strength linearly proportional to position along *z*-axis:

 $B = B_0 + G \cdot z$

NMR measurement of translational diffusion

Pairs of gradients encode & decode the z-position of spins.

Diffusion occurring during the delay ∆ results in imperfect refocusing, and reduction in observed signal.

Data analysis: the Stejskal-Tanner equation

Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques[†] Deborah K. Wilkins, Shaun B. Grimshaw, Véronique Receveur,[‡] Christopher M. Dobson, Jonathan A. Jones,[§] and Lorna J. Smith*

Oxford OXI 3QT, England Received July 28, 1999; Revised Manuscript Received October 4, 1999

Summary: rotational vs translational diffusion

	Rotational	Translational	
Experiment	T ₁ /T ₂ ratio, TRACT	pulsed gradient echos	
Labelling required	¹⁵ N (² H)	none	
Measurement type	local	global	
Relation to structure	τ _c (ns) ≈ 0.6 MW (kDa)	$D = \frac{kT}{6\pi\eta R}$	
Sensitivity to dimerisation	high (τ _c ~ MW)	low (<i>D</i> ~ MW ^{-1/3})	