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Chemical exchange

• Reversible unimolecular reaction, A <=> B, e.g.: 

• folded <=> unfolded 

• open <=> closed 

• trans <=> gauche 

• aromatic ring flips 

• Binding reactions will be considered later

A ⌦ B
k1

k�1

Characterising two-site exchange

A ⌦ B
k1

k�1

⌧A = 1/k1

⌧B = 1/k�1

k
ex

= k1 + k�1

⌧
ex

=
1

k1 + k�1
= 1/k

ex

pA =
k�1

k1 + k�1

pB =
k1

k1 + k�1

pA + pB = 1

• Two-site exchange is fully characterised by two parameters: 

• 1 x thermodynamic (i.e. position of equilibrium) 

• 1 x kinetic (i.e. timescale or rate constant)

Exchange vs the ‘NMR timescale’

• Central concept in understanding all exchange 
phenomena: 

• How fast is exchange RELATIVE to some NMR 
process?



NMR timescales
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• Chemical shift: ∆ω 

• Transverse relaxation (linewidth): ∆R2 

• Scalar coupling: ∆J 

• Note units – all in Hz 
– chemical shifts must be converted to frequencies to calculate ∆ω

Exchange regimes
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Effect of exchange rate

• Exchange between ωA and ωB 

• Coalescence when kex = π ∆ν / √2

Modulating the exchange regime

• Increasing temperature accelerates reaction, shifting towards fast EX 
– assuming populations don’t change significantly 

• Increasing B0 increases ∆ω and shifts towards slower exchange 



Fast vs slow exchange

• Fast exchange: 

• single resonance at shift δ = pAδA+pBδB 
(population weighted average) 

• average shift / linewidth / coupling etc. 

• Slow exchange: 

• two resonances 

• separate shifts / linewidths / couplings etc. 

• Intermediate exchange: 

• Usually broadened to point of unobservability

Fast intermediate exchange

• Fast-intermediate exchange: 

• kex > ∆ω (but not much greater) 

• single resonance at shift δ = pAδA+pBδB 
(population weighted average) 

• some additional line broadening 

• ‘Exchange contribution’ to R2: 

• Rex = pApB∆ω2 / kex = (pApB∆ω2)τex 

• cf. adiabatic local field relaxation, R2 = <Bloc
2> J(0) 

• Rex ∝ B0
2

Slow intermediate exchange
• Slow-intermediate exchange: 

• kex < ∆ω (but not much less) 

• two resonances close to original positions 

• some additional line broadening 

• ‘Lifetime broadening’ contribution to R2: 

• ∆R2,A = k1 

• ∆R2,B = k–1 

• Important consequence: hard to observe minor species 

• ∆R2 not dependent on B0

Asymmetric exchange

• Slow exchange: minor peak broadening much more significant 

• Fast exchange: population weighted peak position heavily 
biased towards major state chemical shift



Scalar coupling exchange

• Intermolecular 
exchange: JB=0 

• Collapse of 
multiplet to 
singlet in fast EX

Scalar coupling exchange

• Intramolecular exchange  
e.g. sidechain rotamers 

• 3JHAHB dependence on χ1 
angle described by Karplus 
equation 

• Slow exchange: 
J ≈ 3 and 12 Hz 

• Fast exchange: 
J ≈ (3 + 3 + 12) / 3 ≈ 6 Hz

Transverse relaxation exchange

• In fast EX, observed relaxation rate is population weighted 
average of individual relaxation rates 

• e.g. PREs to probe residual structure in disordered proteins
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Bloch-McConnell equations

• Classical analysis of exchanging systems 

• Not strictly appropriate for coupled systems 

• Sufficient for analysis in many (most?) cases



ZZ exchange for analysis of slow 
exchanging systems (EXSY)

• Introduce a variable delay between measurement of 
indirect and direct chemical shift dimensions 

• Store magnetization longitudinally during delay 
– sensitive to τex ≲ T1 

• Reactions occuring (in dynamic equilibrium) during 
this time give rise to cross-peaks in characteristic 
square pattern
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ZZ exchange for analysis of slow 
exchanging systems (EXSY)
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• Fitting to integrated Bloch-McConnell equations 

• Compensation for differential transverse relaxation?

Binding equilibria (bimolecular reactions)

• Exchange involving a bimolecular event (2nd order rate 
constant) cannot be analysed directly 

• From the perspective of the observed nucleus, system is still 
just in two site exchange between free and bound states 

• Calculate pseudo-first order rate constant and equilibrium 
populations as function of kon, koff and L0
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Binding equilibria (bimolecular reactions)



Determination of binding constants from 
HSQC chemical shift perturbations

• Chemical shift perturbations give %bound as function of ligand 
concentration 

• Fitting to determine Kd 

• Caution – only in very fast EX! Can result in substantial errors!

Three state exchange


