Chemical exchange
k1
A= B
k_1

¢ Reversible unimolecular reaction, A <=> B, e.g.:

Chemical exchange . folded <—> unfolded

Chris Waudby

c.waudby@ucl.ac.uk ® open <=> closed

e trans <=> gauche
e aromatic ring flips

¢ Binding reactions will be considered later

Characterising two-site exchange Exchange vs the ‘'NMR timescale’
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by e Central concept in understanding all exchange
S 1 1k PB = btk phenomena:
er — ]€—|——]€_ - exr -
' ' pa+pp =1 * How fast is exchange RELATIVE to some NMR

process”?
e Two-site exchange is fully characterised by two parameters:
e 1 x thermodynamic (i.e. position of equilibrium)

e 1 xKkinetic (i.e. timescale or rate constant)



NMR timescales Exchange regimes
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e Chemical shift: Aw relaxation ee ANz | Kea 2 | Rea > D42
e Transverse relaxation (linewidth): AR.
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e Scalar coupling: AJ coupling

¢ Note units — all in Hz
— chemical shifts must be converted to frequencies to calculate Aw

Effect of exchange rate Modulating the exchange regime
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¢ Increasing temperature accelerates reaction, shifting towards fast EX
e Exchange between wa and ws — assuming populations don’t change significantly

e Coalescence when kex = 1 Av /[ +/2 ¢ Increasing Bg increases Aw and shifts towards slower exchange



Fast vs slow exchange Fast intermediate exchange

¢ Fast exchange: ¢ Fast-intermediate exchange:

¢ single resonance at shift & = pada+psbs ® ko > Aw (but not much greater)

(population weighted average)
¢ single resonance at shift & = pada+psds

e average shift / linewidth / coupling etc. (population weighted average)
¢ Slow exchange: * some additional line broadening
® two resonances e ‘Exchange contribution’ to Ro:
e separate shifts / linewidths / couplings etc. ® Rey = PAPBAW? / Keyx = (PAPBAW? )Tex
¢ |ntermediate exchange: e cf. adiabatic local field relaxation, R, = <Bios>> J(0)
e Usually broadened to point of unobservability * R, x By’
Slow intermediate exchange Asymmetric exchange

Slow-intermediate exchange: ‘
® ke < Aw (but not much less)
¢ two resonances close to original positions \ A | ‘

e some additional line broadening SR :

‘Lifetime broadening’ contribution to Ro: e i 10°

* ARop = Ki . P.V+pY

A BB

* ARy = k4
* Slow exchange: minor peak broadening much more significant

Important consequence: hard to observe minor species

e Fast exchange: population weighted peak position heavily
biased towards major state chemical shift

AR, not dependent on By
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Scalar coupling exchange

® [ntermolecular
exchange: Js=0

003;@3@ + H—o@D g_l_A;
D

I e Collapse of

multiplet to
cos—gl—odb + n—od J_‘__

T singlet in fast EX
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Transverse relaxation exchange
Ro ops =paRoa+ppRoB (AR < key)

¢ |n fast EX, observed relaxation rate is population weighted
average of individual relaxation rates

¢ ¢.g. PREs to probe residual structure in disordered proteins
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Scalar coupling exchange

Difssdkal “”‘-“"; b e Intramolecular exchange
Ha/\ﬁ e.g. sidechain rotamers
b

e 3Jnane dependence on X1
angle described by Karplus
equation

e Slow exchange:
J~3and 12 Hz

e [ast exchange:
J=(B3+3+12)/3=6Hz

Bloch-McConnell equations

e (Classical analysis of exchanging systems
e Not strictly appropriate for coupled systems

e Sufficient for analysis in many (most?) cases



// exchange for analysis of slow //Z exchange for analysis of slow
exchanging systems (EXSY) exchanging systems (EXSY)
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* Introduce a variable delay between measurement of 3
indirect and direct chemical shift dimensions s s
% i 2 3

e Store magnetization longitudinally during delay
— sensitive t0 Tex s T

Mixing time /s

e Fitting to integrated Bloch-McConnell equations
e Reactions occuring (in dynamic equilibrium) during

this time give rise to cross-peaks in characteristic e Compensation for differential transverse relaxation?
square pattern

Binding equilibria (bimolecular reactions) Binding equilibria (bimolecular reactions)
Kon k1
Piee + L = Poound — 9 Pree = Poound (a) Slow exchange | (b) Intermediate (c) Fast exchange
kog k_q Tight binding exchange Weak binding
k1 = konl g - "& \ %
Lo % PA WJ ﬁ&
_|_.l A
e Exchange involving a bimolecular event (2nd order rate = 1 : I d -
constant) cannot be analysed directly A Vo | Ve Voo | Ve Vo
N,

¢ From the perspective of the observed nucleus, system is still —
just in two site exchange between free and bound states

e Calculate pseudo-first order rate constant and equilibrium
populations as function of kon, Kot and Lo



Determination of binding constants from
HSQC chemical shift perturbations
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e Chemical shift perturbations give %bound as function of ligand

concentration

e Fitting to determine Ky

e Caution —only in very fast EX! Can result in substantial errors!
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Three state exchange
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