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Translational diffusion
• Global property – all residues in a protein have the same diffusion 

coefficient 

• Stokes–Einstein relation to hydrodynamic radius:

Basic mathematics of diffusion
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Fick’s 1st law:

Continuity equation: 
(conservation of mass)

Fick’s 2nd law:
(‘the diffusion equation’)

Solution of the diffusion equation
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has the solution:

This is a Gaussian 
distribution 

with variance:
hz2i = 2Dt
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i.e. we now know the 
probability of moving 
a distance z in time t



NMR: pulsed-field gradients

Disruption of field homogeneity

Magnetic field strength linearly 
proportional to position  

along z-axis:

B = B0 + G · z
Phase from gradient applied for time δ:

Effect of gradients: the magnetisation helix

� = �G�z

Helix pitch (phase = 2π): z =
2⇡

�G�

i.e. gradient strength defines a characteristic length scale

e.g. G = 0.55 T m–1(100%), δ = 4ms => pitch ≈ 10 µm

NMR measurement of translational diffusion

Pulsed-gradient spin-echo

Pairs of gradients encode & decode 
the z-position of spins. 

Diffusion occurring during the delay ∆ results in imperfect 
refocussing, and reduction in observed signal.

Qualitative description (the magnetisation helix)

diffusion…encoding 
gradient

decoding 
gradient

Tighter helix => more sensitive to diffusion



The Stejskal-Tanner equation Derivation of the Stejskal-Tanner equation

φ

phase φ = ω t

ω = ω0 + γGz

spin-echo: we can ignore 
ω0 (chemical shift) as it will 

always be refocused A

B

C

φA = γGδz1

φB = –γGδz1

φC = –γGδz1 + γGδz2 = γGδ(z2–z1) = γGδZ

Derivation of the Stejskal-Tanner equation

Observed signal:

I(G) =

X

spins

(cos�+ i sin�) =
X

spins

ei� = hei�i = hei�G�Zi

How to calculate average? Basic physics of diffusion! 
We know the probability of displacement Z in time ∆ has a 
Gaussian distribution: P(Z) ~ N(0, 2D∆), so write average in 
terms of this:
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Derivation of the Stejskal-Tanner equation
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Looks formidable, but the integral is 
just a Fourier transform!

Conjugate variables are Z and γGδ

Fourier transform of a Gaussian with variance 2D∆ is a 
Gaussian with variance 1/2D∆
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Optimisation of parameters

• I/I0 – want to see substantial decay, ideally to 10% 

• Gyromagnetic ratio – proton already most sensitive 
nucleus (apart from 3H) 

• Diffusion delta (∆) – as small as possible 
(T1 relaxation losses) 

• Max. gradient strength – fixed limit, determined by 
gradient amplifier hardware 

• Gradient length (δ) – limited by probe (<4 ms)

Convection

Rayleigh-Bénard number: Ra =
↵�TgL3

⌫
Thermal expansion coefficient 

α ≈ 0.0002 K–1

Kinematic viscosity 
ν ≈ 10–6 m2 s–1

Acceleration due to gravity 
g = 9.8 m2 s–1
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Thermal diffusivity 
κ ≈ 1.4 x 10–7 m2 s–1

Racrit ⇠ 200
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Critical value for 

onset of convection:

Effect of convection on NMR
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Effect of convection on NMR
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Convection compensation

22 µm s-1

35 µm s-1

Dapp = D0 +
v2
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Data analysis
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Interpretation of hydrodynamic radius Refinement of pulse sequences
Pulsed-gradient stimulated-echo



Refinement of pulse sequences

Stimulated echo with bipolar gradients

Refinement of pulse sequences
Double stimulated echo

Refinement of pulse sequences
15N XSTE

Refinement of pulse sequences
Methyl-TROSY 1H STE-HMQC



2D diffusion experiments
1H-15N XSTE-HSQC


