Diffusion

Chris Waudby

c.waudby@ucl.ac.uk

Basic mathematics of diffusion

Fick's 1stlaw: 7 — D@
0z

Continuity equation: 9  9J
(conservation of mass) 5; = 5,

Fick's 2nd law:  9c Da%
(‘the diffusion equation’) 9t ~ 922

Translational diffusion

* Global property — all residues in a protein have the same diffusion
coefficient

» Stokes-Einstein relation to hydrodynamic radius:
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Solution of the diffusion equation
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has the solution: ¢(z,t) = —— exp <_4Z_Dt>

This is a Gaussian c
distribution
with variance:

(%) = 2Dt

I.e. we now know the
probability of moving
a distance z in time t




NMR: pulsed-field gradients

proportional to position
along z-axis:
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Pairs of gradients encode & decode
the z-position of spins.

Diffusion occurring during the delay A results in imperfect

refocussing, and reduction in observed signal.

Disruption of field homogeneity

Magnetic field strength linearly

Pulsed-gradient spin-echo

Effect of gradients: the magnetisation helix
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Phase from gradient applied for time &: ¢ = vGdz
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Helix pitch (phase = 2m): z = —’yG5

i.e. gradient strength defines a characteristic length scale

e.g. G =0.55Tm1(100%), 6 = 4ms => pitch = 10 pm

Qualitative description (the magnetisation helix)
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Tighter helix => more sensitive to diffusion



The Stejskal-Tanner equation
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- =exp [~(G19)*(8 - 6/3)D]

Derivation of the Stejskal-Tanner equation

Observed signal:

I(G) = Z (cosp +isin¢) = Z et — <€i¢> _ <€maaz>

spins spins

How to calculate average? Basic physics of diffusion!

We know the probability of displacement Z in time A has a
Gaussian distribution: P(Z) ~ N(0, 2DA), so write average in
terms of this:
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Derivation of the Stejskal-Tanner equation

phase ¢ = wt
H:
w = wo + YGz ATAVAVA:
spin-echo: we can ignore ¢ = =
wo (chemical shift) as it will © :
always be refocused W; C
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dc = —-yG6z1 + YGOz2 = YGO(z2-21) = YGOZ

Derivation of the Stejskal-Tanner equation

I(G)N/ eNGZp(7)dz N/ oiVG8Z ,~Z%/ADA 7
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Looks formidable, but the integral is
just a Fourier transform!

Conjugate variables are Z and yGé

Fourier transform of a Gaussian with variance 2DA is a
Gaussian with variance 1/2DA

I(G) ~ exp [—(vG8)*DA] = Iy exp [—(vGS)*DA]



Optimisation of parameters

- =exp [-(G107 (8~ 5/3)D]

* |/lp — want to see substantial decay, ideally to 10%

» Gyromagnetic ratio — proton already most sensitive
nucleus (apart from 3H)

* Diffusion delta (A) — as small as possible
(T4 relaxation losses)

* Max. gradient strength — fixed limit, determined by
gradient amplifier hardware

» Gradient length (&) — limited by probe (<4 ms)

Effect of convection on NMR

flow

E(G) = exp (—G*7*6°AD) /
E(G) = exp (—G*7*6*AD) exp (iGyd Av)

E(G) =exp (—G27252AD) [exp (iGydAv)
+ exp (—iGy6Av) | /2

% (e” + e_i"”) = COS T

E(G) = exp [-G*¥*6*AD] cos (G Av)
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Convection
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Rayleigh-Bénard number:  Ra =

Thermal expansion coefficient
a =~ 0.0002 K-

>

N
Kinematic viscosity
v~ 106 m2gs

Thermal diffusivity
K~14x107m2gs1

Sample depth L

Acceleration due to gravity
g=98m2s
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ritical value for
Critical value fo Rt ~ 2002
T

- onset of convection:

Effect of convection on NMR

E(G) = exp [-G*¥*6>AD] cos (Gy6Av)
2

cost~1— % + O(z?)

exp(—bG?) ~ 1 — bG* + O(G?)

12
E(G) ~ exp l—G2y262A (DO + ‘;A)l

A exp [—G27252ADapp}

Radiusr

Temperature gradient AT



Convection compensation
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Data analysis
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IL = exp [~ (GY6)2(A — 6/3)D)]
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Refinement of pulse sequences

Pulsed-gradient stimulated-echo
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Refinement of pulse sequences
Stimulated echo with bipolar gradients
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Refinement of pulse sequences
15N XSTE
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Refinement of pulse sequences

Double stimulated echo
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Refinement of pulse sequences
Methyl-TROSY 'H STE-HMQC
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N chemical shift / ppm

2D diffusion experiments
1H-15N XSTE-HSQC
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