Translational diffusion

- Global property all residues in a protein have the same diffusion coefficient
- Stokes-Einstein relation to hydrodynamic radius:

$$D = \frac{kT}{6\pi\eta R}$$

Basic mathematics of diffusion

Diffusion

Chris Waudby c.waudby@ucl.ac.uk

Fick's 1st law:
$$J = D \frac{\partial c}{\partial z}$$
Continuity equation:
(conservation of mass) $\frac{\partial c}{\partial t} = \frac{\partial J}{\partial z}$ Fick's 2nd law:
('the diffusion equation') $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial z^2}$

(

Solution of the diffusion equation

 $\frac{\partial c}{\partial t}$

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial z^2} \quad \text{with initial condition} \quad c(t = 0) = \delta(z)$$

has the solution: $c(x, t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{z^2}{4Dt}\right)$
This is a Gaussian
distribution
with variance:
 $\langle z^2 \rangle = 2Dt$
i.e. we now know the
probability of moving
a distance z in time t

NMR: pulsed-field gradients

Disruption of field homogeneity

Magnetic field strength linearly proportional to position along z-axis:

 $B = B_0 + G \cdot z$

NMR measurement of translational diffusion

Pairs of gradients encode & decode the z-position of spins.

Diffusion occurring during the delay Δ results in imperfect refocussing, and reduction in observed signal.

Effect of gradients: the magnetisation helix

Phase from gradient applied for time δ : $\phi = \gamma G \delta z$ Helix pitch (phase = 2π): $z = \frac{2\pi}{\gamma G \delta}$

i.e. gradient strength defines a characteristic length scale e.g. G = 0.55 T m⁻¹(100%), δ = 4ms => pitch \approx 10 µm

Qualitative description (the magnetisation helix)

Tighter helix => more sensitive to diffusion

The Stejskal-Tanner equation

Derivation of the Stejskal-Tanner equation

phase $\phi = \omega t$ $\omega = \omega_0 + \gamma Gz$ spin-echo: we can ignore ω_0 (chemical shift) as it will always be refocused $\phi_A = \gamma G \delta z_1$ $\phi_B = -\gamma G \delta z_1$

 $\varphi_{C} = -\gamma G \delta z_{1} + \gamma G \delta z_{2} = \gamma G \delta (z_{2} - z_{1}) = \gamma G \delta Z$

Derivation of the Stejskal-Tanner equation

Observed signal:

$$I(G) = \sum_{\text{spins}} \left(\cos \phi + i \sin \phi \right) = \sum_{\text{spins}} e^{i\phi} = \langle e^{i\phi} \rangle = \langle e^{i\gamma G\delta Z} \rangle$$

How to calculate average? Basic physics of diffusion! We know the probability of displacement Z in time Δ has a Gaussian distribution: P(Z) ~ N(0, 2D Δ), so write average in terms of this:

$$I(G) \sim \int_{-\infty}^{\infty} e^{i\gamma G\delta Z} P(Z) dZ \sim \int_{-\infty}^{\infty} e^{i\gamma G\delta Z} e^{-Z^2/4D\Delta} dZ$$

Derivation of the Stejskal-Tanner equation

$$I(G) \sim \int_{-\infty}^{\infty} e^{i\gamma G\delta Z} P(Z) dZ ~\sim \int_{-\infty}^{\infty} e^{i\gamma G\delta Z} e^{-Z^2/4D\Delta} dZ$$

Looks formidable, but the integral is just a Fourier transform!

Conjugate variables are Z and $\gamma G \delta$

Fourier transform of a Gaussian with variance 2D Δ is a Gaussian with variance 1/2D Δ

$$I(G) \sim \exp\left[-(\gamma G\delta)^2 D\Delta\right] = I_0 \exp\left[-(\gamma G\delta)^2 D\Delta\right]$$

Optimisation of parameters

$$\frac{I}{I_0} = \exp\left[-(G\gamma\delta)^2(\Delta - \delta/3)D\right]$$

- I/I_0 want to see substantial decay, ideally to 10%
- Gyromagnetic ratio proton already most sensitive nucleus (apart from ³H)
- Diffusion delta (Δ) as small as possible $(T_1 \text{ relaxation losses})$
- Max. gradient strength fixed limit, determined by gradient amplifier hardware
- Gradient length (δ) limited by probe (<4 ms)

Effect of convection on NMR

Convection

Effect of convection on NMR

$$E(G) = \exp\left[-G^2 \gamma^2 \delta^2 \Delta D\right] \cos\left(G\gamma \delta \Delta v\right)$$
$$\cos x \approx 1 - \frac{x^2}{2} + O(x^4)$$
$$\exp(-bG^2) \approx 1 - bG^2 + O(G^4)$$
$$E(G) \approx \exp\left[-G^2 \gamma^2 \delta^2 \Delta \left(D_0 + \frac{v^2}{2}\Delta\right)\right]$$
$$\approx \exp\left[-G^2 \gamma^2 \delta^2 \Delta D_{\rm app}\right]$$

Convection compensation

$\frac{I}{I_0} = \exp\left[-(G\gamma\delta)^2(\Delta - \delta/3)D\right]$ $\frac{kT}{6\pi\eta R}$

7

0

G/G max

19

 $\frac{8}{\delta_{H}}/ppm$

Data analysis

Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques[†]

Deborah K. Wilkins, Shaun B. Grimshaw, Véronique Receveur,[‡] Christopher M. Dobson, Jonathan A. Jones,[§] and Lorna J. Smith* Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, England Received July 28, 1999; Revised Manuscript Received October 4, 1999

Refinement of pulse sequences

Refinement of pulse sequences

Stimulated echo with bipolar gradients

Refinement of pulse sequences

Double stimulated echo

dstegp3s

Refinement of pulse sequences $^{15}N XSTE$ A 1H T T Refinement of pulse sequences

Methyl-TROSY ¹H STE-HMQC

